Abstract

A new mechanism for quantifying the filling energetics in the left ventricle (LV) and past mechanical heart valves (MHV) is identified and presented. This mechanism is attributed to vortex formation dynamics past MHV leaflets. Recent studies support the conjecture that the natural healthy left ventricle (LV) performs in an optimum, energy-preserving manner by redirecting the flow with high efficiency. Yet to date, no quantitative proof has been presented. The present work provides quantitative results and validation of a theory based on the dynamics of vortex ring formation, which is governed by a critical formation number (FN) that corresponds to the dimensionless time at which the vortex ring has reached its maximum circulation content, in support of this hypothesis. Herein, several parameters (vortex ring circulation, vortex ring energy, critical FN, hydrodynamic efficiencies, vortex ring propagation speed) have been quantified and presented as a means of bridging the physics of vortex formation in the LV. In fact, the diastolic hydrodynamic efficiencies were found to be 60, 41, and 29%, respectively, for the porcine, anti-anatomical, and anatomical valve configurations. This assessment provides quantitative proof of vortex formation, which is dependent of valve design and orientation, being an important flow characteristic and associated to LV energetics. Time resolved digital particle image velocimetry with kilohertz sampling rate was used to study the ejection of fluid into the LV and resolve the spatiotemporal evolution of the flow. The clinical significance of this study is quantifying vortex formation and the critical FN that can potentially serve as a parameter to quantify the LV filling process and the performance of heart valves.

1.
Kilner
,
P. J.
,
Yang
,
G.
,
Wilkes
,
A. J.
,
Mohladin
,
R. H.
,
Firmin
,
D. N.
, and
Yacoub
,
M. H.
, 2000, “
Asymmetric Redirection of Flow Through the Heart
,”
Nature (London)
0028-0836,
404
, pp.
759
761
.
2.
Green Sheldon
,
I.
, 1995,
Fluid Vortices
,
Kluwer Academic Publishers
, Netherlands.
3.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
, 1998, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
0022-1120,
360
, pp.
121
140
.
4.
Rosenfeld
,
M.
,
Rambod
,
E.
, and
Gharib
,
M.
, 1998, “
Circulation and Formation Number of Laminar Vortex Rings
,”
J. Fluid Mech.
0022-1120,
376
, pp.
297
318
.
5.
Bronzino
, and
Joseph
,
D.
, 1999,
The Biomedical Engineering Handbook
.
CRC Press
, Boca Raton, 2nd ed., Vol.
I
, Chap. 29, pp.
1
15
.
6.
Didden
,
N.
, 1979, “
On the Formation of Vortex Rings Rolling-up and Production of Circulation
,”
Z. Angew. Math. Phys.
0044-2275,
30
(
1
), pp.
101
116
.
7.
Pullin
,
D. I.
, 1979, “
Vortex Ring Formation at Tube and Orifice Opening
,”
Phys. Fluids
0031-9171,
22
, pp.
401
403
.
8.
Glezer
,
A.
, and
Coles
,
D.
, 1990, “
An Experimental Study of a Turbulent Vortex Ring
,”
J. Fluid Mech.
0022-1120,
221
, pp.
243
283
.
9.
Saffman
,
P. G.
, 1992,
Vortex Dynamics
,
Cambridge University Press
, Cambridge, England.
10.
Chandran
,
K. B.
,
Cabell
,
G. N.
,
Khalighi
,
B.
, and
Chen
,
C. J.
, 1983, “
Laser Anemometry Measurements of Pulsatile Flow Past Aortic Valve Prostheses
,”
J. Biomech.
0021-9290,
16
(
10
), pp.
865
873
.
11.
Chandran
,
K. B.
,
Khaloghi
,
B.
, and
Chen
,
C. J.
, 1985, “
Experimental Study of Physiological Pulsatile Flow Past Valve Prostheses in a Model of Human Aorta: I. Caged Ball Valves
,”
J. Biomech.
0021-9290,
18
(
10
), pp.
763
772
.
12.
Reul
,
H.
,
Giersiepen
,
M.
,
Schindehutte
,
H.
,
Effert
,
S.
, and
Rau
,
G.
, 1986, “
Comparative in vitro Evaluation of Porcine and Pericardial Bioprostheses.
Z. Kardiol.
0300-5860,
75
(Suppl. 2), pp.
223
31
.
13.
Bruss
,
K. H.
,
Reul
,
H.
,
Van Gilse
,
J.
, and
Knott
,
E.
, 1983, “
Pressure Drop and Velocity Fields at Four Mechanical Heart Valve Prostheses: Bjork-Shiley Standard, Bjork-Shiley Concave-Convex, Hall-Kaster and St-Jude Medical
,”
Life Support Syst.
0261-989X,
1
, pp.
3
22
.
14.
Giersiepen
,
M.
,
Reul
,
H.
,
Knoch
,
M.
, and
Rau
,
G.
, 1986, “
Pressure Drop and Velocity Fields at Mechanical Heart Valves
,”
Life Support Syst.
0261-989X,
4
(Suppl. 2), pp.
166
168
.
15.
Yoganathan
,
A. P.
,
Woo
,
Y.
, and
Sung
,
H.
, 1986, “
Turbulent Shear Stress Measurements in the Vicinity of Aortic Heart Valve Prostheses
,”
J. Biomech.
0021-9290,
19
(
6
), pp.
433
442
.
16.
Hasenkam
,
J. M.
,
Westphal
,
D.
,
Wygaard
,
H.
,
Reul
,
H.
,
Giersiepen
,
M.
, and
Stodkilde-Jorgensen
,
H.
, 1988, “
In Vitro Stress Measurements in the Vicinity of Six Mechanical Aortic Valves Using Hot-Film Anemometry in Steady Flow
,”
J. Biomech.
0021-9290,
21
, pp.
235
47
.
17.
Hanle
,
D. D.
,
Harrison
,
E. C.
,
Yoganathan
,
A. P.
,
Alens
,
D. T.
, and
Corocran
,
W. H.
, 1989, “
In Vitro Flow Dynamics of Four Prosthetic Aortic Valves: A Comparative Analysis
,”
J. Biomech.
0021-9290,
22
, pp.
597
607
.
18.
Giersiepen
,
M.
,
Krause
,
U.
,
Knott
,
E.
,
Reul
,
H.
, and
Rau
,
G.
, 1989 “
Velocity and Shear Stress Distribution Downstream of Mechanical Heart Valves in Pulsatile Flow
,”
Int. J. Artif. Organs
0391-3988,
12
(
4
), pp.
261
269
.
19.
Tonietto
,
G.
, 1990, “
Etude experimentale et numerique des ecoulements post-valvulaires
,” These de Doctorat, Universite., Aix-Marseille II, Institut de Mecanique des Fluides de Marseille.
20.
Lim
,
W. L.
,
Chew
,
Y. T.
,
Chew
,
T. C.
, and
Low
,
H. T.
, 1994, “
Particle Image Velocimetry in the Investigation of Flow Past Artificial Heart Valves
,”
Ann. Biomed. Eng.
0090-6964,
22
, pp.
307
318
.
21.
Woo
,
Y.
, and
Yoganathan
,
A. P.
, 1986, “
In Vitro Pulsatile Flow Velocity and Shear Stress Measurements in the Vicinity of Mechanical Mitral Heart Valve Prostheses
,”
J. Biomech.
0021-9290,
19
(
6
), pp.
39
51
.
22.
Chandran
,
K. B.
,
Schoephoerster
,
R.
, and
Dellesperger
,
K. C.
, 1989, “
Effect of Prosthetic Mitral Valve Geometry and Orientation on Flow Dynamics in a Model of Human Left Ventricle
,”
J. Biomech.
0021-9290,
22
(
1
), pp.
51
65
.
23.
Schoephoerster
,
R. T.
,
Oynes
,
F.
,
Numez
,
H.
,
Kapadvanjwala
,
M.
, and
Dewanjee
,
M. K.
, 1993, “
Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposition on Artificial Surfaces
,”
Arterioscler. Thromb.
1049-8834,
12
, pp.
1806
1813
.
24.
Schoephoerster
,
R. T.
, and
Chandran
,
K. B.
, 1991, “
Velocity and Turbulence Measurements Past Mitral Valve Prostheses in a Model Left Ventricle
,”
J. Biomech.
0021-9290,
24
(
7
), pp.
549
562
.
25.
Bluestein
,
D.
,
Rambod
,
E.
, and
Gharib
,
M.
, April 2000, “
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
125
134
.
26.
Kleine
,
P.
,
Perthel
,
M.
,
Hasenkam
,
J. M.
,
Nygaard
,
H.
,
Hansen
,
S.
, and
Laas
,
J.
1999, “
High-Intensity Transient Signals as a parameter for Optimum Orientation of Mechanical Aortic Valves
,”
Thorac. Cardiovasc. Surg.
0171-6425,
48
, pp.
360
363
.
27.
Laas
,
J.
,
Kleine
,
P.
,
Hasenkam
,
M.
, and
Nygaard
,
H.
, 1999, “
Orientation of Tilting Disc and Bileaflet Aortic Valve Substitutes for Optimal Hemodynamics
,”
Ann. Thorac. Surg.
0003-4975,
68
, pp.
10961
10969
.
28.
Fontaine
,
A.
,
He
,
S.
,
Stadter
,
R.
,
Ellis
,
J. T.
,
Levine
,
R. A.
, and
Yoganathan
,
A. P.
, 1996, “
In Vitro Assessment of Prosthetic Valve Function in Mitral Valve Replacement with Chordal Preservation Techniques
,”
J. Heart Valve Dis.
0966-8519,
5
(
2
), pp.
186
198
.
29.
Garitey
,
V.
,
Gandelheid
,
T.
,
Fusezi
,
J.
,
Pelissier
,
R.
, and
Rieu
,
R.
, 1995, “
Ventricular Flow Dynamic Past Bileaflet Prosthetic Heart Valves
,”
Int. J. Artif. Organs
0391-3988,
18
(
7
), pp.
380
391
.
30.
Ohta
,
Y.
,
Okamoto
,
K.
,
Sonderegger
,
M.
,
Dohi
,
T.
,
Matsumoto
,
H.
, and
Horiuchi
,
T.
, 1997, “
Nonsymmetric Leaflet Motion of St. Jude Medical Mitral Valves Simulated with a Computer-Controlled Hydraulic Mock Circulator
,”
Artif. Organs
0160-564X,
21
(
4
), pp.
335
339
.
31.
Zhaoming
,
He
,
Ritchie
,
Jennifer
,
Grashow
,
Jonathan
,
S.
,
Sacks
,
Michael
,
S.
,
Yoganathan
, and
Ajit
,
P.
, 2005, “
In Vitro Dynamic Strain Behavior of the Mitral Valve Posterior Leaflet
,”
J. Biomech. Eng.
0148-0731,
127
, pp.
504
511
.
32.
Ellis
,
Jeffrey
,
T.
, and
Ajiit
,
Yoganathan
,
2000, “
A Comparison of the Hinge and Near-hinge Flow Fields of the St. Jude Medical Hemodynamic Plus and Regent Bileaflet Mechanical Heart Valves
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
119
(
1
), pp.
83
93
.
33.
Meyer
,
Richard
,
Deutsch
,
Steven
,
Maymir
,
Juan-Carlos
,
Geselowitz
,
David
, and
Tarbell
,
John
,
1997, “
Three-Component Laser Doppler Velocimetry Measurements in the Regurgitant Flow Region of a Bjork-Shiley Monostrut Mitral Valve
,”
Ann. Biomed. Eng.
0090-6964,
25
, pp.
1081
1091
.
34.
Lamson
,
T. C.
,
Rosenberg
,
G.
,
Geselowitz
,
D. B.
,
Deutsch
,
S.
,
Stinebring
,
D. R.
,
Frangos
,
J. A.
, and
Tarbell
,
J. M.
, 1993, “
Relative Blood Damage in the Three Phases of a Prosthetic Heart Valve Flow Cycle
,”
ASAIO J.
1058-2916,
39
(
3
), pp.
M626
633
.
35.
Lee
,
C. S. F.
, and
Talbot
,
L.
, 1979, “
A Fluid-mechanical Study of the Closure of Heart Valves
,”
J. Fluid Mech.
0022-1120,
91
(
1
), pp.
41
63
.
36.
Reul
,
H.
,
Talukder
,
N.
, and
Muller
,
E. W.
, 1981, “
Fluid Mechanics of the Natural Mitral Valve
,”
J. Biomech.
0021-9290,
14
(
5
), pp.
361
372
.
37.
Gross
,
J. M.
,
Shermer
,
C. D.
, and
Hwang
,
H. C.
, 1988, “
Vortex Shedding in Bileaflet Heart Valve Prosthesis
,”
Trans. Am. Soc. Artif. Intern. Organs
0066-0078,
34
, pp.
845
850
.
38.
Liu
,
J. S.
,
Lu
,
P. C.
, and
Chu
,
S. H.
, 1996, “
Pulsatile Flow Past Bileaflet Aortic Valve Prostheses
,”
J. Chin. Inst. Eng.
0253-3839,
19
, pp.
333
344
.
39.
Mouret
,
F.
,
Garitey
,
V.
,
Gandelheid
,
T.
,
Fuseri
,
R.
, and
Rieu
,
R.
, 2000, “
A New Dual Activation Simulator of the Left Heart Which Reproduces Physiological and Pathological Conditions
,”
Med. Biol. Eng. Comput.
0140-0118,
38
, pp.
558
561
.
40.
Browne
,
P.
,
Ramuzat
,
A.
,
Saxena
,
R.
, and
Yoganathan
,
A. P.
, 2000, “
Experimental Investigation of the Steady Flow Downstream of the St. Jude Bileaflet Heart Valve: A Comparison Between Laser Doppler Velocimetry and Particle Image Velocimetry Techniques
,”
Ann. Biomed. Eng.
0090-6964,
28
(
1
), pp.
39
47
.
41.
Pierrakos
,
O.
,
Vlachos
,
P.
, and
Telionis
,
D.
2004, “
Time Resolved DPIV Analysis of Vortex Dynamics in a Left Ventricular Model Through Bileaflet Mechanical and Porcine Heart Valve Prostheses
,”
J. Biomech. Eng.
0148-0731,
126
, pp.
714
726
.
42.
Willert
,
C. E.
, and
Gharib
,
M.
, 1991, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
10
, pp.
181
193
.
43.
Westerweel
,
J.
, 1993,
Digital Particle Image Velocimetry, Theory and Application
,
Delft University Press
, Delft, Netherlands.
44.
Huang
,
H.
,
Dabiri
,
D.
, and
Gharib
,
M.
, 1997 “
On Errors of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
(
12
), pp.
1427
1440
.
45.
Abiven
,
C.
, and
Vlachos
,
P. P.
, 2002, “
Comparative Study of Established DPIV Algorithms for Planar Velocity Measurements
,”
ASME International Mechanical Engineering Congress and Exposition (IMECE)-33170
, New Orleans, LA, Nov. 17–22.
46.
Abiven
,
C.
, and
Vlachos
,
P. P.
, 2002, “
Super Spatio-Temporal Resolution, Digital, PIV System for Multi-Phase Flows with Phase Differentiation and Simultaneous Shape and Size Quantification
,”
ASME International Mechanical Engineering Congress and Exposition (IMECE)-33170
, New Orleans, LA, Nov. 17–22.
47.
Oh
,
J. K.
,
Appleton
,
C. P.
,
Hatle
,
L K.
.
,
Nishimura
,
R A.
.
,
Seward
,
J. B.
, and
Tajik
,
A. J.
, 1997, “
The Non-Invasive Assessment of Left Verticula Diastolin Function With Two-Dimensional and Doppler Echocardiography
,”
J. Am. Soc. Echocardiogr
0894-7317,
10
, pp.
246
270
.
48.
Edmunds
, and
Henry
,
I.
, 2001, “
Evolution of Prosthetic Heart Valves
,”
Am. Heart J.
0002-8703,
141
, pp.
849
855
.
49.
Etebari
,
A.
, and
Vlachos
,
P.
, 2005, “
Improvements on the Accuracey of Derivative Estimation From DPIV Veloicity Measurements
,”
Exp. Fluids
0723-4864,
39
(
6
), pp.
1040
-
1050
.
50.
Shusser
,
M.
, and
Gharib
,
M.
, 2000, “
Energy and Velocity of a Forming Vortex Ring
,”
Phys. Fluids
1070-6631,
12
(
3
), pp.
618
622
.
51.
Panton Ronald
,
L.
, 1996,
Incompressible Flow
,
John Wiley & Sons, Inc.
, New York.
52.
Haller
,
G.
, 2005, “
An Objective Definition of a Vortex
,”
J. Fluid Mech.
0022-1120,
525
, pp.
1
26
.
53.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
0022-1120,
285
, pp.
69
94
.
54.
Prandtl
,
L.
, 1952,
Essentials of Fluid Dynamics
,
Blackie & Son, Ltd.
, London.
55.
Fisher
,
J.
, and
Wheatley
,
D. J.
, 1988, “
Hydrodynamic Function of Ten Prosthetic Heart Valves in the Aortic Position
,”
Clin. Phys. Physiol. Meas.
0143-0815,
9
(
4
), pp.
307
317
.
56.
Vandervoort
,
P. M.
,
Greenberg
,
N. L.
,
Powell
,
K. A.
,
Cosgrove
,
D. M.
, and
Thomas
,
J. D.
, 1995, “
Pressure Recovery in Bileaflet Heart Valve Prostheses
,”
Circulation
0009-7322,
92
, pp.
3464
3472
.
57.
Krueger
,
P.
,
Dabiri
,
J.
, and
Gharib
,
M.
, 2003, “
Vortex Ring Pinch-off in the Presence of Simultaneously Initiated Uniform Background Co-flow
,”
Phys. Fluids
1070-6631,
15
(
7
), pp.
49
52
.
You do not currently have access to this content.