Hyperthermia is a cancer treatment modality in which body tissue is exposed to elevated temperatures to destroy cancerous cells. Hyperthermia treatment planning refers to the use of computational models to optimize the heating protocol with the goal of isolating thermal damage to predetermined treatment areas. This paper presents an algorithm to optimize a hyperthermia treatment protocol using the conjugate gradient method with the adjoint problem. The output of the minimization algorithm is a heating protocol that will cause a desired amount of thermal damage. The transient temperature distribution in a cylindrical region is simulated using the bioheat transfer equation. Temperature and time are integrated to calculate the extent of thermal damage in the region via a first-order rate process based on the Arrhenius equation. Several validation experiments are carried out by applying the results of the minimization algorithm to an albumen tissue phantom. Comparisons of metrics describing the damage region (the height and radius of the volume of thermally ablated phantom) show good agreement between the desired extent of damage and the measured extent of damage. The sensitivity of the bioheat transfer model and the Arrhenius damage model to their constituent parameters is calculated to create a tolerable range of error between the desired and measured extent of damage. The measured height and radius of the ablated region fit well within the tolerable range of error found in the sensitivity analysis.

1.
Ahmed
,
M.
, and
Goldberg
,
S. N.
, 2002, “
Thermal Ablation Therapy for Hepatocellular Carcinoma
,”
J. Vasc. Interv Radiol.
1051-0443,
13
,
S231
S243
.
2.
Lagendijk
,
J. J. W.
, 2000, “
Hyperthermia Treatment Planning
,”
Phys. Med. Biol.
0031-9155,
45
, pp.
R61
R76
.
3.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
0021-8987,
1
, pp.
93
122
.
4.
Diller
,
K. R.
, 1992, “
Modeling of Bioheat Transfer Processes at High and Low Temperatures
,”
Adv. Heat Transfer
0065-2717,
22
, pp.
157
357
.
5.
Henriques
,
F. C.
, and
Moritz
,
A. R.
, 1947, “
Studies of Thermal Injury I. The Conduction of Heat to and Through Skin and the Temperatures Attained Therein. A Theoretical and Experimental Investigation
,”
Am. J. Pathol.
0002-9440,
23
, pp.
531
549
.
6.
Pearce
,
J. A.
, and
Thomsen
,
S.
, 1992, “
Kinetic Models of Tissue Fusion Processes
,”
Proceedings of Laser Surgery (SPIE): Advanced Characterization, Therapeutics, and Systems III
, Vol.
1643
, pp.
251
260
.
7.
Yang
,
Y.
,
Welch
,
A. J.
, and
Rylander
,
H. G.
, III
, 1991, “
Rate Process Parameters of Albumen
,”
Lasers Surg. Med.
0196-8092,
11
, pp.
188
199
.
8.
Sapareto
,
S. A.
, and
Dewey
,
W. C.
, 1984, “
Thermal Dose Determination in Cancer Therapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
10
, pp.
787
800
.
9.
Wright
,
N. T.
, 2003, “
On a Relationship Between the Arrhenius Parameters From Thermal Damage Studies
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
300
303
.
10.
Loulou
,
T.
, and
Scott
,
E. P.
, 2002, “
Thermal Dose Optimization in Hyperthermia Treatments by Using the Conjugate Gradient Method
,”
Numer. Heat Transfer, Part A
1040-7782,
42
(
7
), pp.
661
683
.
11.
Pfefer
,
T. J.
,
Chan
,
K. F.
,
Hammer
,
D. X.
, and
Welch
,
A. J.
, 2000, “
Dynamics of Pulsed Holmium: YAG Laser Photocoagulation of Albumen
,”
Phys. Med. Biol.
0031-9155,
45
, pp.
1099
1114
.
12.
Yamamoto
,
T.
,
Juneja
,
L. R.
,
Hatta
,
H.
, and
Kim
,
M.
, 1997,
Hen Eggs: Their Basic and Applied Science
,
CRC Press
, Boca Raton, FL.
13.
Alifanov
,
O. M.
,
Artyukhin
,
E. E.
, and
Rumyantsev
,
S. V.
, 1995,
Extreme Methods of Solving III-Posed Problems and Their Applications to Inverse Heat Transfer Problems
,
Begell House
, New York.
14.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
, 1985,
Inverse Heat Conduction. III Posed Problems
,
Wiley Interscience
, New York
15.
Ozişik
,
M. N.
, and
Orlande
,
H. R. B.
, 1999,
Inverse Heat Transfer: Fundamentals and Applications
.
Taylor and Francis
, New York, NY.
16.
Polak
,
E.
, 1971,
Computational Methods in Optimization
,
Academic Press
, New York.
17.
Jarny
,
Y.
,
Ozisik
,
M. N.
, and
Bardon
,
J. P.
, 1991, “
A General Optimization Method Using the Adjoint Equation for Solving Multidimensional Inverse Heat Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
34
(
11
), pp.
2911
2919
.
18.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
, New York.
19.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw Hill
, New York.
20.
Gayzik
,
F. S.
, 2004, “
Optimal Control of Thermal Damage to Biological Materials
,” Master of Science in Mechanical Engineering, Virginia Polytechnic Institute and State University.
21.
Cebral
,
J. R.
,
Soto
,
O. S.
,
Lutz
,
R. J.
, and
Wood
,
B. J.
, 2003, “
Effects of Blood Flow on Radiofrequency Ablation of Tumors: Finite Elements and In Vitro Models
,”
ASME, IMECE
, November
15
21
, Washington, D.C.
22.
Heldman
,
D. R.
, 1977,
Food Process Engineering
,
AVI
, Westport, CT.
You do not currently have access to this content.