Coronary artery disease (CAD) is characterized by the progression of atherosclerosis, a complex pathological process involving the initiation, deposition, development, and breakdown of the plaque. The blood flow mechanics in arteries play a critical role in the targeted locations and progression of atherosclerotic plaque. In coronary arteries with motion during the cardiac contraction and relaxation, the hemodynamic flow field is substantially different from the other arterial sites with predilection of atherosclerosis. In this study, our efforts focused on the effects of arterial motion and local geometry on the hemodynamics of a left anterior descending (LAD) coronary artery before and after clinical intervention to treat the disease. Three-dimensional (3D) arterial segments were reconstructed at 10 phases of the cardiac cycle for both pre- and postintervention based on the fusion of intravascular ultrasound (IVUS) and biplane angiographic images. An arbitrary Lagrangian-Eulerian formulation was used for the computational fluid dynamic analysis. The measured arterial translation was observed to be larger during systole after intervention and more out-of-plane motion was observed before intervention, indicating substantial alterations in the cardiac contraction after angioplasty. The time averaged axial wall shear stress ranged from 0.2to9.5Pa before intervention compared to 0.02to3.53Pa after intervention. Substantial oscillatory shear stress was present in the preintervention flow dynamics compared to that in the postintervention case.

1.
Karino
,
T.
,
Motomiya
,
M.
, and
Goldsmith
,
H. L.
, 1990, “
Flow Patterns at the Major T-Junctions of the Dog Descending Aorta
,”
J. Biomech.
0021-9290,
23
(
6
), pp.
537
548
.
2.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Clin. Sci.
0323-5084,
40
(
2
), pp.
5P
.
3.
Ding
,
Z.
,
Biggs
,
T.
,
Seed
,
W. A.
, and
Friedman
,
M. H.
, 1997, “
Influence of the Geometry of the Left Main Coronary Artery Bifurcation on the Distribution of Sudanophilia in the Daughter Vessels
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
17
(
7
), pp.
1356
1360
.
4.
Zarins
,
C. K.
, and
Glagov
,
S.
, 1994, “
Pathophysiology of Human Atherosclerosis
,” in
Vascular Surgery-Principles and Practice
,
F. J.
Veith
,
R. W.
Hobson
II
, and
R. A.
Williams
, eds.,
McGraw-Hill
, New York, pp.
21
39
.
5.
Myers
,
J. G. MJA
,
Ohja
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 2001, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
109
120
.
6.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ethier
,
C. R.
, 2003, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
0090-6964,
31
(
4
), pp.
420
429
.
7.
Friedman
,
M. H.
,
Ding
,
Z.
,
Eaton
,
G. M.
, and
Seed
,
W. A.
, 1999, “
Relationship Between the Dynamics of Coronary Arteries and Coronary Atherosclerosis
,”
ASME BED Summer Bioengineering Conference
, ASME, Big Sky, Montana, pp.
49
50
.
8.
Pao
,
Y. C.
,
Lu
,
J. T.
, and
Ritman
,
E. L.
, 1992, “
Bending and Twisting of an In-Vivo Coronary Artery at a Bifurcation
,”
J. Biomech.
0021-9290,
25
, pp.
287
295
.
9.
Ding
,
Z.
, and
Friedman
,
M. H.
, 2000, “
Quantification of 3-D Coronary Arterial Motion Using Clinical Biplane Cineangiograms
,”
Int. J. Card. Imaging
0167-9899,
16
(
5
), pp.
331
346
.
10.
Moore
,
J. E.
Jr.
,
Guggenheim
,
N.
,
Delfino
,
A.
,
Doriot
,
P. A.
,
Dorsaz
,
P. A.
,
Rutishauser
,
W.
, and
Meister
,
J. J.
, 1994, “
Preliminary Analysis of the Effects of Blood Vessel Movement on Blood Flow Patterns in the Coronary Arteries
,”
J. Biomech. Eng.
0148-0731,
116
(
3
), pp.
302
6
.
11.
Schilt
,
S.
,
Moore
,
J. E.
Jr.
,
Delfino
,
A.
, and
Meister
,
J. J.
, 1996, “
The Effects of Time-Varying Curvature on Velocity Profiles in a Model of the Coronary Arteries
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
469
474
.
12.
Santamarina
,
A.
,
Weydahl
,
E.
,
Siegel
,
J. M.
Jr.
, and
Moore
,
J. E.
Jr.
, 1998, “
Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-Varying Curvature
,”
Ann. Biomed. Eng.
0090-6964,
26
(
6
), pp.
944
954
.
13.
Moore
,
J. E.
Jr.
,
Weydahl
,
E. S.
, and
Santamarina
,
A.
, 2001, “
Frequency Dependence of Dynamic Curvature Effects on Flow Through Coronary Arteries
,”
J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
129
133
.
14.
Ramaswamy
,
S. D.
, 2003, “
Three and Four-Dimensional Hemodynamics in Human Coronary Artery Segments
,” Doctoral thesis, University of Iowa, Iowa City.
15.
Ramaswamy
,
S. D.
,
Vigmostad
,
S. C.
,
Wahle
,
A.
,
Lai
,
Y.-G.
,
Olszewski
,
M. E.
,
Braddy
,
K. C.
,
Brennan
,
T. M. H.
,
Rossen
,
J. D.
,
Sonka
,
M.
, and
Chandran
,
K. B.
, 2004, “
Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery With Arterial Motion
,”
Ann. Biomed. Eng.
0090-6964,
32
(
12
), pp.
1628
1641
.
16.
Wahle
,
A.
,
Prause
,
G. P. M.
,
von Birgelen
,
C.
,
Erbel
,
R.
, and
Sonka
,
M.
, 1999, “
Fusion of Angiography and Intravascular Ultrasound in Vivo: Establishing the Absolute 3-D Frame Orientation
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
(
10
), pp.
1176
1180
.
17.
Wahle
,
A.
,
Prause
,
G. P. M.
,
DeJong
,
S. C.
, and
Sonka
,
M.
, 1999, “
Geometrically Correct 3D Reconstruction of Intravascular Ultrasound Images by Fusion With Biplane Angiography: Methods and Validation
,”
IEEE Trans. Med. Imaging
0278-0062,
18
(
8
), pp.
686
699
.
18.
Sonka
,
M.
,
Zhang
,
X.
,
Siebes
,
M.
,
Bissing
,
M. S.
,
DeJong
,
S. C.
,
Collins
,
S. M.
, and
McKay
,
C. R.
, 1995, “
Segmentation of Intravascular Ultrasound Images: a Knowledge-Based Approach
,”
IEEE Trans. Med. Imaging
0278-0062,
14
(
4
), pp.
719
732
.
19.
Olszewski
,
M. E.
,
Wahle
,
A.
,
Vigmostad
,
S. C.
, and
Sonka
,
M.
, 2005, “
Multidimensional Segmentation of Coronary Intravascular Ultrasound Images Using Knowledge-Based Methods
,”
Proc. SPIE
0277-786X Int. Soc. Opt. Eng.,
5747
, pp.
496
504
.
20.
Foley
,
J. D.
,
van Dam
,
A.
,
Feiner
,
S. K.
, and
Hughes
,
J. F.
, 1990,
Computer Graphics: Principles and Practice
,
Addison-Wesley
, Reading, MA.
21.
Bookstein
,
F. L.
, 1989, “
Principle Warps: Thin-Plate Splines and the Decomposition of Deformations
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
11
(
6
), pp.
567
585
.
22.
Lai
,
Y. G.
,
Weber
,
L.
, and
Patel
,
V. C.
, 2000, “
U2RANS: a Comprehensive Hydraulic Flow Simulation Code—Its Development and Applications
,”
4th International Conference on Hydroinformatics
, Iowa City, IA.
23.
Lai
,
Y. G.
, and
Przekwas
,
A. J.
, 1994, “
A Finite-Volume Method for Fluid Flow Simulations With Moving Boundaries
,”
Comput. Fluid Dyn. J.
0918-6654,
2
, pp.
19
40
.
24.
Berne
,
R. M.
, and
Levy
,
M. N.
, 1992,
Cardiovascular Physiology
, 6th ed.,
Mosby-Yearbook Inc.
, St. Louis, MO.
25.
Sabbah
,
H. N.
,
Walburn
,
F. J.
, and
Stein
,
P. D.
, 1984, “
Patterns of Flow in the Left Coronary Artery
,”
J. Biomech. Eng.
0148-0731,
106
(
3
), pp.
272
279
.
26.
Kajiya
,
F.
,
Matsuoka
,
S.
,
Ogasawara
,
Y.
,
Hiramatsu
,
O.
,
Kanazawa
,
S.
,
Wada
,
Y.
,
Tadaoka
,
S.
,
Tsujioka
,
K.
,
Fujiwara
,
T.
, and
Zamir
,
M.
, 1993, “
Velocity Profiles and Phasic Flow Patterns in the Nonstenotic Human Left Anterior Descending Coronary Artery During Cardiac Surgery
,”
Cardiovasc. Res.
0008-6363,
27
(
5
), pp.
845
850
.
27.
Liu
,
Y.
,
Lai
,
Y.
,
Nagaraj
,
A.
,
Kane
,
B.
,
Hamilton
,
A.
,
Greene
,
R.
,
McPherson
,
D. D.
, and
Chandran
,
K. B.
, 2001, “
Pulsatile Flow Simulation in Arterial Vascular Segments With Intravascular Ultrasound Images
,”
Med. Eng. Phys.
1350-4533,
23
(
8
), pp.
583
595
.
28.
Wahle
,
A.
,
Medina
,
R.
,
Braddy
,
K. C.
,
Fox
,
J. M.
,
Brennan
,
T. M. H.
,
Lopez
,
J. J.
,
Rossen
,
J. D.
, and
Sonka
,
M.
, 2003, “
Impact of Local Vessel Curvature on the Circumferential Plaque Distribution in Coronary Arteries
,”
SPIE Medical Imaging 2003: Physiology and Function
, Clough AV, and
A. A.
Amini
, pp.
204
213
.
29.
Wahle
,
A.
,
Olszewski
,
M. E.
,
Vigmostad
,
S. C.
,
Medina
,
R.
,
Coskun
,
A. U.
,
Feldman
,
C. L.
,
Stone
,
P. H.
,
Braddy
,
K. C.
,
Brennan
,
T. M. H.
,
Rossen
,
J. D.
,
Chandran
,
K. B.
, and
Sonka
,
M.
, 2004, “
Quantitative Analysis of Circumferential Plaque Distribution in Human Coronary Arteries in Relation to Local Curvature
,” in
Proceedings of the 2004 IEEE International Symposium on Biomedical Imaging
,
IEEE Press
,
Piscataway
, NJ, pp.
531
534
.
30.
He
,
X.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
74
82
.
31.
Sabbah
,
H. N.
,
Khaja
,
F.
,
Brymer
,
J. F.
,
Hawkins
,
E. T.
, and
Stein
,
P. D.
, 1984, “
Blood Velocity in the Right Coronary Artery: Relation to the Distribution of Atherosclerotic Lesions
,”
Am. J. Cardiol.
0002-9149,
53
(
8
), pp.
1008
1012
.
32.
Sabbah
,
H. N.
,
Khaja
,
F.
,
Hawkins
,
E. T.
,
Brymer
,
J. F.
,
McFarland
,
T. M.
,
van der Bel-Kahn
,
J.
,
Doerger
,
P. T.
, and
Stein
,
P. D.
, 1986, “
Relation of Atherosclerosis to Arterial Wall Shear in the Left Anterior Descending Coronary Artery of Man
,”
Am. Heart J.
0002-8703,
112
(
3
), pp.
453
458
.
33.
Tadaoka
,
S.
,
Wada
,
Y.
,
Kimura
,
A.
,
Yada
,
T.
,
Tamura
,
K.
,
Hasegawa
,
K.
,
Nezuo
,
S.
,
Sawayama
,
T.
,
Tsujioka
,
K.
, and
Kajiya
,
F.
, 1991, “
Effect of Left Ventricular Hypertrophy Secondary to Systemic Hypertension on Left Coronary Artery Flow Dynamics
,”
Cardiovasc. Res.
0008-6363,
25
(
11
), pp.
955
964
.
34.
Kimura
,
A.
,
Hiramatsu
,
O.
,
Yamamoto
,
T.
,
Ogasawara
,
Y.
,
Yada
,
T.
,
Goto
,
M.
,
Tsujioka
,
K.
, and
Kajiya
,
F.
, 1992, “
Effect of Coronary Stenosis on Phasic Pattern of Septal Artery in Dogs
,”
Am. J. Physiol.
0002-9513,
262
(
6
Pt 2), pp.
H1690
8
.
35.
Miuwissen
,
M.
,
Chamuleau
,
S. A. J.
,
Siebes
,
M.
,
Schotborgh
,
C. E.
,
Koch
,
K. T.
,
de Winter
,
R. J.
,
Bax
,
M.
,
de Jong
,
A.
,
Spaan
,
J. A. E.
, and
Piek
,
J. J.
, 2001, “
Role of Variability in Microvascular Resistance on Fractional Flow Reserve and Coronary Blood Flow Velocity Reserve in Intermediate Coronary Lesions
,”
Circulation
0009-7322,
103
, pp.
184
187
.
36.
Berthier
,
B.
,
Bouzerar
,
R.
, and
Legallais
,
C.
, 2002, “
Blood Flow Patterns in an Anatomically Realistic Coronary Vessel: Influence of Three Different Reconstruction Methods
,”
J. Biomech.
0021-9290,
35
(
10
), pp.
1347
1356
.
You do not currently have access to this content.