Background: Quasilinear viscoelasticity (QLV) theory has been widely and successfully used to describe the time-dependent response of connective tissues. Difficulties remain, however, particularly in material parameter estimation and sensitivities. In this study, we introduce a new alternative: the fractional order viscoelasticity (FOV) theory, which uses a fractional order integral to describe the relaxation response. FOV implies a fractal-like tissue structure, reflecting the hierarchical arrangement of collagenous tissues. Method of Approach: A one-dimensional (1-D) FOV reduced relaxation function was developed, replacing the QLV “box-spectrum” function with a fractional relaxation function. A direct-fit, global optimization method was used to estimate material parameters from stress relaxation tests on aortic valve tissue. Results: We found that for the aortic heart valve, FOV had similar accuracy and better parameter sensitivity than QLV, particularly for the long time constant (τ2). The mean (n=5) fractional order was 0.29, indicating that the viscoelastic response of the tissue was strongly fractal-like. Results summary: mean QLV parameters were C=0.079, τ1=0.004, τ2=76, and mean FOV parameters were β=0.29, τ=0.076, and ρ=1.84. Conclusions: FOV can provide valuable new insights into tissue viscoelastic behavior. Determining the fractional order can provide a new and sensitive quantitative measure for tissue comparison.

1.
Fung
,
Y. C.
, 1973, “
Biorheology of soft tissues
,”
Biorheology
0006-355X,
10
, pp.
139
155
.
2.
Pinto
,
J. G.
, and
Patitucci
,
P. J.
, 1980, “
Visco-Elasticity of Passive Cardiac Muscle
,”
J. Biomech. Eng.
0148-0731,
102
, pp.
57
61
.
3.
Woo
,
S. L.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
, 1980, “
Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage
,”
J. Biomech. Eng.
0148-0731,
102
, pp.
85
90
.
4.
Woo
,
S. L.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
, 1981, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medical Collateral Ligament
,”
J. Biomech. Eng.
0148-0731,
103
, pp.
293
298
.
5.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N. Y.
, and
Woo
,
S. L.
, 1994, “
Tensile and Viscoelastic Properties of Human Patellar Tendon
,”
J. Orthop. Res.
0736-0266,
12
, pp.
796
803
.
6.
Carew
,
E. O.
,
Talman
,
E. A.
,
Boughner
,
D. R.
, and
Vesely
,
I.
, 1999, “
Quasi-Linear Viscoelastic Theory Applied to Internal Shearing of Porcine Aortic Valve Leaflets
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
386
392
.
7.
Thomopoulos
,
S.
,
Williams
,
G. R.
, and
Soslowsky
,
L. J.
, 2003, “
Tendon to Bone Healing: Differences in Biomechanical, Structural, and Compositional Properties Due to a Range of Activity Levels
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
106
113
.
8.
Elliott
,
D. M.
,
Robinson
,
P. S.
,
Gimbel
,
J. A.
,
Sarver
,
J. J.
,
Abboud
,
J. A.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
, 2003, “
Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
599
605
.
9.
Han
,
L.
,
Noble
,
J. A.
, and
Burcher
,
M.
, 2003, “
A Novel Ultrasound Indentation System For Measuring Biomechanical Properties Of In Vivo Soft Tissue
,”
Ultrasound Med. Biol.
0301-5629,
29
, pp.
813
823
.
10.
Kwan
,
M. K.
,
Lin
,
T. H.
, and
Woo
,
S. L.
, 1993, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
26
, pp.
447
452
.
11.
Podlubny
,
I.
, 1999, in
Mathematics in Science and Engineering
(
Academic Press
, San DiegoVol), Vol.
198
, pp.
268
277
.
12.
Glockle
,
W. G.
, and
Nonnenmacher
,
T. F.
, 1995, “
A Fractional Calculus Approach to Self-Similar Protein Dynamics
,”
Biophys. J.
0006-3495,
68
, pp.
46
53
.
13.
Suki
,
B.
,
Barabasi
,
A. L.
, and
Lutchen
,
K. R.
, 1994, “
Lung Tissue Viscoelasticity: A Mathematical Framework and Its Molecular Basis
,”
J. Appl. Physiol.
8750-7587,
76
, pp.
2749
2759
.
14.
Carew
,
E. O.
,
Doehring
,
T. C.
,
Barber
,
J. E.
,
Freed
,
A. D.
, and
Vesely
,
I.
, 2003, in ASME Summer Bioengineering Conference, Key Biscayne, FL.
15.
Ross
,
B.
, 1977, “
The Development of Fractional Calculus 1695–1900
,”
Hist. Math.
0315-0860,
4
, pp.
75
89
.
16.
Miller
,
K. S.
, and
Ross
,
B.
, 1993,
An Introduction to the Fractional Calculus and Fractional Differential Equations
(
Wiley
, New York, NY).
17.
Douglas
,
J. F.
, 2000, in
Applications of Fractional Calculus in Physics
, edited by
R.
Hilfer
(
World Scientific
, Singapore) pp.
241
330
.
18.
Heymans
,
N.
, and
Bauwens
,
J. C.
, 1994, “
Fractal Rheological Models and Fractional Differential Equations for Viscoelastic Behavior
,”
Rheol. Acta
0035-4511,
33
, pp.
210
219
.
19.
Doehring
,
T. C.
,
Carew
,
E. O.
, and
Vesely
,
I.
, 2004, “
The Effect of Strain Rate on the Viscoelastic Response of Aortic Valve Tissue: A Direct-Fit Approach
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
223
232
.
20.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
(
Springer-Verlag
, New York, NY).
21.
Mitton
,
R. G.
, 1945, “
Mechanical Properties of Leather Fibres
,”
J. Soc. Leather Trades' Chem.
0037-9921,
29
, pp.
169
194
.
22.
Carew
,
E. O.
, and
Vesely
,
I.
, 1998, “
Alternative Relaxation Spectra for Quasi-Linear Viscoelastic Theory Models
,”
Ann. Biomed. Eng.
0090-6964,
26
, p.
S
-
65
.
23.
Gorenflo
,
R.
,
Loutchko
,
I.
, and
Luchko
,
Y.
, 2002, “
Computation of the Mittag–Leffler Function E(z) and its Derivatives
,”
Fractional Calculus Appl. Anal.
1311-0454,
5
, pp.
491
518
.
24.
Puso
,
M. A.
, and
Weiss
,
J. A.
, 1998, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
J. Biomech. Eng.
0148-0731,
120
, pp.
62
70
.
25.
Rousseau
,
E. P.
,
Sauren
,
A. A.
,
van Hout
,
M. C.
, and
van Steenhoven
,
A. A.
, 1983, “
Elastic and Viscoelastic Material Behaviour of Fresh and Glutaraldehyde-Treated Porcine Aortic Valve Tissue
,”
J. Biomech.
0021-9290,
16
, pp.
339
48
.
26.
Haut
,
R. C.
, and
Little
,
R. W.
, 1972, “
A Constitutive Equation For Collagen Fibers
,”
J. Biomech.
0021-9290,
5
, pp.
423
430
.
27.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
Jr.
, 2001, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
908
14
.
You do not currently have access to this content.