Endothelial cells possess a mechanical network connecting adhesions on the basal surface, the cytoskeleton, and the nucleus. Transmission of force at adhesions via this pathway can deform the nucleus, ultimately resulting in an alteration of gene expression and other cellular changes (mechanotransduction). Previously, we measured cell adhesion area and apparent nuclear stretch during endothelial cell rounding. Here, we reconstruct the stress map of the nucleus from the observed strains using finite-element modeling. To simulate the disruption of adhesions, we prescribe displacement boundary conditions at the basal surface of the axisymmetric model cell. We consider different scenarios of the cytoskeletal arrangement, and represent the cytoskeleton as either discrete fibers or as an effective homogeneous layer. When the nucleus is in the initial (spread) state, cytoskeletal tension holds the nucleus in an elongated, ellipsoidal configuration. Loss of cytoskeletal tension during cell rounding is represented by reactive forces acting on the nucleus in the model. In our simulations of cell rounding, we found that, for both representations of the cytoskeleton, the loss of cytoskeletal tension contributed more to the observed nuclear deformation than passive properties. Since the simulations make no assumption about the heterogeneity of the nucleus, the stress components both within and on the surface of the nucleus were calculated. The nuclear stress map showed that the nucleus experiences stress on the order of magnitude that can be significant for the function of DNA molecules and chromatin fibers. This study of endothelial cell mechanobiology suggests the possibility that mechanotransduction could result, in part, from nuclear deformation, and may be relevant to angiogenesis, wound healing, and endothelial barrier dysfunction.

1.
Davies
,
P. F.
,
Barbee
,
K. A.
,
Volin
,
M. V.
,
Robotewskyj
,
A.
,
Chen
,
J.
,
Joseph
,
L.
,
Griem
,
M. L.
,
Wernick
,
M. N.
,
Jacobs
,
E.
,
Polacek
,
D. C.
,
dePaola
,
N.
, and
Barakat
,
A. I.
, 1997, “
Spatial Relationships in Early Signaling Events of Flow-Mediated Endothelial Mechanotransduction
,”
Annu. Rev. Physiol.
0066-4278,
59
, pp.
527
549
.
2.
Brighton
,
C. T.
,
Fisher
,
J. R.
,
Levine
,
S. E.
,
Corsetti
,
J. R.
,
Reilly
,
T.
,
Landsman
,
A. S.
,
Williams
,
J. L.
, and
Thibault
,
L. E.
, 1996, “
The Biochemical Pathway Mediating the Proliferative Response of Bone Cells to a Mechanical Stimulus
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78A
, pp.
1337
1347
.
3.
Brownell
,
W. E.
,
Spector
,
A. A.
,
Raphael
,
R. M.
, and
Popel
,
A. S.
, 2001, “
Micro- and Nanomechanics of the Cochlear Outer Hair Cell
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
169
194
.
4.
Gudi
,
S.
,
Nolan
,
J. P.
, and
Frangos
,
J. A.
, 1998, “
Modulation of GTPase Activity of G Proteins by Fluid Stress and Phospholipid Composition
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
95
, pp.
2616
2619
.
5.
Mathur
,
A. B.
,
Truskey
,
G. A.
, and
Reichert
,
W. M.
, 2000, “
Atomic Force and Total Internal Reflection Fluorescence Microscopy for the Study of Force Transmission in Endothelial Cells
,”
Biophys. J.
0006-3495,
78
, pp.
1725
1735
.
6.
Mathur
,
A. B.
,
Truskey
,
G. A.
, and
Reichert
,
W. M.
, 2000, “
Total Internal Reflection Microscopy and Atomic Force Microscopy (TIRFM-AFM) to Study Stress Transduction Mchanisms in Endothelial Cells
,”
Crit. Rev. Biomed. Eng.
0278-940X,
28
, pp.
197
202
.
7.
Maniotis
,
A. J.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
, 1997, “
Demonstration of Mechanical Connections Between Integrins, Cytoskeletal Filaments, and Nucleoplasm that Stabilize Nuclear Structure
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
, pp.
849
854
.
8.
Thomas
,
C. H.
,
Collier
,
J. H.
,
Sfeir
,
C. S.
, and
Healy
,
K. E.
, 2002, “
Engineering Gene Expression and Protein Synthesis by Modulation of Nuclear Shape
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
1972
1977
.
9.
Zlatanova
,
J.
, and
Leuba
,
S. H.
, 2002, “
Stretching and Imaging Single DNA Molecules and Chromatin
,”
J. Muscle Res. Cell Motil.
0142-4319,
23
, pp.
377
395
.
10.
Strick
,
T. R.
,
Allemand
,
J. F.
,
Bensimon
,
D.
, and
Croquette
,
V.
, 1998, “
Behavior of Supercoiled DNA
,”
Biophys. J.
0006-3495,
74
, pp.
2016
2028
.
11.
Allemand
,
J. F.
,
Bensimon
,
D.
,
Laverly
,
R.
, and
Croquette
,
V.
, 1998, “
Stretched and Overwound DNA form a Pauling-Like Structure with Exposed Bases
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
95
, pp.
14152
14157
.
12.
Cui
,
Y.
, and
Bustamante
,
C.
, 2000, “
Pulling a Single Chromatin Fiber Reveals the Forces that Maintain its Higher-Order Structure
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
97
, pp.
127
132
.
13.
Brower-Toland
,
B. D.
,
Smith
,
C. L.
,
Yeh
,
R. C.
,
Lis
,
J. T.
,
Peterson
,
C. L.
, and
Wang
,
M. D.
, 2002, “
Mechanical Disruption of Individual Nucleosomes Reveals a Reversible Multistage Release of DNA
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
1960
1965
.
14.
Wang
,
M. D.
,
Schnitzer
,
M. J.
,
Yin
,
H.
,
Landick
,
R.
,
Gelles
,
J.
, and
Block
,
S. M.
, 1998, “
Force and Velocity Measured for Single Molecules of RNA Polymerase
,”
Science
0036-8075,
282
, pp.
902
907
.
15.
Jean
,
R. P.
,
Gray
,
D. S.
,
Spector
,
A. A.
, and
Chen
,
C. S.
, 2004, “
Characterization of the Nuclear Deformation Caused by Changes in Endothelial Cell Shape
,”
J. Biomech. Eng.
0148-0731,
126
, pp.
552
558
.
16.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J. J.
, 2002, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
0021-9290,
35
, pp.
177
187
.
17.
Theret
,
D. P.
,
Levesque
,
M. J.
,
Sato
,
M.
,
Nerem
,
R. M.
, and
Wheeler
,
L. T.
, 1988, “
The Application of a Homogenous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements
,”
J. Biomech. Eng.
0148-0731,
110
, pp.
190
199
.
18.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
, 2003, “
Cells Ling on a Bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
, pp.
1484
1489
.
19.
Lee
,
J.
,
Leonard
,
M.
,
Oliver
,
T.
,
Ishihara
,
A.
, and
Jacobson
,
K.
, 1994, “
Traction Forces Generated by Locomoting Keratocytes
,”
J. Cell Biol.
0021-9525,
127
, pp.
1957
1964
.
20.
Oliver
,
T.
,
Dembo
,
M.
, and
Jacobson
,
K.
, 1995, “
Traction Forces in Locomoting cells
,”
Cell Motil. Cytoskeleton
0886-1544,
31
, pp.
225
240
.
21.
Pienta
,
K. J.
, and
Coffey
,
D. S.
, 1992, “
Nuclear-Cytoskeletal Interactions: Evidence for Physical Connections Between the Nucleus and Cell Periphery and Their Alteration by Transformation
,”
J. Cell. Biochem.
0730-2312,
49
, pp.
357
365
.
22.
Guilak
,
F.
,
Tedrow
,
J. R.
, and
Burgkart
,
R.
, 2000, “
Viscoelastic Properties of the Cell Nucleus
,”
Biochem. Biophys. Res. Commun.
0006-291X,
269
, pp.
781
786
.
23.
Mogilner
,
A.
, and
Oster
,
G.
, 2003, “
Polymer Motors: Pushing Out the Front and Pulling Up the Back
,”
Curr. Biol.
0960-9822,
13
, pp.
R721
R733
.
24.
Dembo
,
M.
, and
Harlow
,
F.
, 1983, “
Cell Motility, Contractile Networks, and the Physics of Interpenetrating Reactive Flow
,”
Biophys. J.
0006-3495,
50
, pp.
109
121
.
25.
Dahl
,
K. N.
, and
Discher
,
D. E.
, 2002, “
Micromechanical properties of isolated nuclei and nuclear components
,”
Annual Fall Meeting of the Biomedical Engineering Society
, p.
144
.
26.
Polack
,
K. J.
, and
Widom
,
J.
, 1995, “
Mechanism of Protein Access to Specific DNA Sequences in Chromatin: A Dynamic Equilibrium Model for Gene Regulation
,”
J. Mol. Biol.
0022-2836,
254
, pp.
130
149
.
You do not currently have access to this content.