A computational fluid dynamics (CFD) model of the cerebrospinal fluid system was constructed based on a simplified geometry of the brain ventricles and their connecting pathways. The flow is driven by a prescribed sinusoidal motion of the third ventricle lateral walls, with all other boundaries being rigid. The pressure propagation between the third and lateral ventricles was examined and compared to data obtained from a similar geometry with a stenosed aqueduct. It could be shown that the pressure amplitude in the lateral ventricles increases in the presence of aqueduct stenosis. No difference in phase shift between the motion of the third ventricle walls and the pressure in the lateral ventricles because of the aqueduct stenosis could be observed. It is deduced that CFD can be used to analyze the pressure propagation and its phase shift relative to the ventricle wall motion. It is further deduced that only models that take into account the coupling between ventricles, which feature a representation of the original geometry that is as accurate as possible and which represent the ventricle boundary motion realistically, should be used to make quantitative statements on flow and pressure in the ventricular space.

1.
Davson
,
H.
, and
Segal
,
M. B.
, 1996,
Physiology of the CSF and Blood-Brain Barriers
,
CRC Press
, Boca Raton.
2.
Friese
,
S.
,
Klose
,
U.
, and
Voigt
,
K.
, 2002, “
Zur Pulsation des Liquor cerebrospinalis
,”
Klin. Neurorad.
0150-9861
12
, pp.
67
75
.
3.
Greitz
,
D.
, 1993, “
Cerebrospinal Fluid Circulation and Associated Intracranial Dynamics: A Radiologic Investigation using MR Imaging and Radionuclide Cisternography
,”
Acta Radiol., Suppl.
0365-5954
386
, pp.
1
23
.
4.
Du Boulay
,
G.
,
O’Connell
,
J.
,
Currie
,
J.
,
Bostick
,
T.
, and
Verity
,
P.
, 1972, “
Further Investigations on Pulsatile Movements in the Cerebrospinal Fluid Pathways
,”
Acta Radiol.: Diagn.
0567-8056
13
, pp.
496
523
.
5.
Feinberg
,
D. A.
, and
Mark
,
A. S.
, 1987, “
Human Brain Motion and Cerebrospinal Fluid Circulation Demonstrated With MR Velocity Imaging
,”
Radiology
0033-8419
163
, pp.
793
799
.
6.
Vanneste
,
J. A. L.
, 2000, “
Diagnosis and Management of Normal-Pressure Hydrocephalus
,”
J. Neurol.
0340-5354
247
, pp.
5
14
.
7.
Monro
,
A.
, 1783,
Observations on the Structure and Functions of the Nervous System
, Johnson, Edinburgh.
8.
Sivaloganathan
,
S.
,
Tenti
,
G.
, and
Drake
,
J. M.
, 1998, “
Mathematical Pressure Volume Models of the Cerebrospinal Fluid
,”
Appl. Math. Comput.
0096-3003
94
, pp.
243
266
.
9.
Nagashima
,
T.
,
Tamaki
,
N.
,
Matsumoto
,
S.
,
Horwitz
,
B.
, and
Seguchi
,
Y.
, 1987, “
Biomechanics of Hydrocephalus: A New Theoretical Model
,”
Neurosurgery
0148-396X
21
, pp.
898
904
.
10.
Biot
,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979
12
, pp.
155
164
.
11.
Kaczmarek
,
M.
,
Subramaniam
,
R. P.
, and
Neff
,
S. R.
, 1997, “
The Hydromechanics of Hydrocephalus: Steady-State Solutions for Cylindrical Geometry
,”
Bull. Math. Biol.
0092-8240
59
, pp.
295
323
.
12.
Jacobson
,
E. E.
,
Fletcher
,
D. F.
,
Morgan
,
M. K.
, and
Johnston
,
I. H.
, 1996, “
Fluid Dynamics of the Cerebral Aqueduct
,”
Pediatr. Neurosurg.
1016-2291
24
, pp.
229
236
.
13.
Jacobson
,
E. E.
,
Fletcher
,
D. F.
,
Morgan
,
M. K.
, and
Johnston
,
I. H.
, 1999, “
Computer Modelling of the Cerebrospinal Fluid Flow Dynamics of Aqueduct Stenosis
,”
Med. Biol. Eng. Comput.
0140-0118
37
, pp.
59
63
.
14.
Last
,
R. J.
, and
Tompsett
,
D. H.
, 1953, “
Casts of the Cerebral Ventricles
,”
Br. J. Surg.
0007-1323
164
, pp.
525
543
.
15.
National Library of Medicine, 1994, Visible Human Project, Bethesda, http://www.nlm.nih.govhttp://www.nlm.nih.gov.
16.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
, 2001, “
Hydrodynamic Modeling of Cerebrospinal Fluid Motion within the Spinal Cavity
,”
ASME J. Biomech. Eng.
0148-0731
123
, pp.
71
79
.
17.
Fin
,
L.
, and
Grebe
,
R.
, 2003, “
Three Dimensional Modeling of the Cerebrospinal Fluid Dynamics and Brain Interactions in the Aqueduct of Sylvius
,”
Comput. Methods Biomech. Biomed. Engin.
6
, pp.
163
170
.
18.
Miller
,
K.
,
Chinzei
,
K.
,
Orssengo
,
G.
, and
Bednarz
,
P.
, 2000, “
Mechanical Properties of Brain Tissue In-Vivo: Experiment and Computer Simulation
,”
J. Biomech.
0021-9290
33
, pp.
1369
1376
.
19.
Enzmann
,
D. R.
, and
Pelc
,
N. J.
, 1992, “
Brain Motion: Measurement With Phase-Contrast MR Imaging
,”
Radiology
0033-8419
185
, pp.
653
660
.
20.
Kurtcuoglu
,
V.
,
Sundaram
,
S.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2003, “
CFD Analysis of Pressure Propagation in the Brain Ventricles
,” BMES Annual Fall Meeting, Nashville.
21.
Bloomfield
,
I. G.
,
Johnston
,
I. H.
, and
Bilston
,
L. E.
, 1998, “
Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid
,”
Pediatr. Neurosurg.
1016-2291
28
, pp.
246
251
.
22.
CFD-ACE (U) User Manual, Ver 2002.
23.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid-Flows
,”
Numer. Heat Transfer
0149-5720
7
, pp.
147
163
.
24.
Childs
,
S. J.
, 2000, “
The Energetic Implications of the Time Discretization in Implementations of the A.L.E. Equations
,”
Int. J. Numer. Methods Fluids
0271-2091
32
, pp.
979
1019
.
25.
Kyriacou
,
S. K.
,
Mohamed
,
A.
,
Miller
,
K.
, and
Neff
,
S.
, 2002, “
Brain Mechanics for Neurosurgery: Modeling Issues
,”
Biomech. Model. Mechanobiol.
1
, pp.
151
164
.
26.
Bock
,
A.
,
Geske
,
R.
, and
Schnackenburg
,
B.
, 2000, “
Die Höhe des Liquorflusses über dem Aquädukt
,”
Klin. Neurorad.
0150-9861
10
, pp.
51
67
.
27.
Kohn
,
M. I.
,
Tanna
,
N. K.
,
Herman
,
G. T.
,
Resnick
,
S. M.
,
Mozley
,
P. D.
,
Gur
,
R. E.
,
Alavi
,
A.
,
Zimmerman
,
R. A.
, and
Gur
,
R. C.
, 1991, “
Analysis of Brain and Cerebrospinal Fluid Volumes With MR Imaging: Part I. Methods, Reliability, and Validation
,”
Radiology
0033-8419
178
, pp.
115
122
.
You do not currently have access to this content.