We investigated the mechanotransduction pathway in endothelial cells between their nucleus and adhesions to the extracellular matrix. First, we measured nuclear deformations in response to alterations of cell shape as cells detach from a flat surface. We found that the nuclear deformation appeared to be in direct and immediate response to alterations of the cell adhesion area. The nucleus was then treated as a neo-Hookean compressible material, and we estimated the stress associated with the cytoskeleton and acting on the nucleus during cell rounding. With the obtained stress field, we estimated the magnitude of the forces deforming the nucleus. Considering the initial and final components of this adhesion-cytoskeleton-nucleus force transmission pathway, we found our estimate for the internal forces acting on the nucleus to be on the same order of magnitude as previously measured traction forces, suggesting a direct mechanical link between adhesions and the nucleus.

1.
Davies
,
P. F.
,
Barbee
,
K. A.
,
Volin
,
M. V.
,
Robotewskyj
,
A.
,
Chen
,
J.
,
Joseph
,
L.
,
Griem
,
M. L.
,
Wernick
,
M. N.
,
Jacobs
,
E.
,
Polacek
,
D. C.
,
dePaola
,
N.
, and
Barakat
,
A. I.
,
1997
, “
Spatial Relationships in Early Signaling Events of Flow-Mediated Endothelial Mechanotransduction
,”
Annu. Rev. Physiol.
,
59
, pp.
527
549
.
2.
Brighton
,
C. T.
,
Fisher
,
J. R.
,
Levine
,
S. E.
,
Corsetti
,
J. R.
,
Reilly
,
T.
,
Landsman
,
A. S.
,
Williams
,
J. L.
, and
Thibault
,
L. E.
,
1996
, “
The Biochemical Pathway Mediating the Proliferative Response of Bone Cells to a Mechanical Stimulus
,”
Bone Joint Surg. A., Vol.
,
78
, pp.
1337
1347
.
3.
Brownell
,
W. E.
,
Spector
,
A. A.
,
Raphael
,
R. M.
, and
Popel
,
A. S.
,
2001
, “
Micro- and Nanomechanics of the Cochlear Outer Hair Cell
,”
Annu. Rev. Biomed. Eng.
,
3
, pp.
169
194
.
4.
Gudi
,
S.
,
Nolan
,
J. P.
, and
Frangos
,
J. A.
,
1998
, “
Modulation of GTPase Activity of G Proteins by Fluid Stress and Phospholipid Composition
,”
Proc. Natl. Acad. Sci. U.S.A.
,
95
, pp.
2616
2619
.
5.
Mathur
,
A. B.
,
Truskey
,
G. A.
, and
Reichert
,
W. M.
,
2000
, “
Atomic Force and Total Internal Reflection Fluorescence Microscopy for the Study of Force Transmission in Endothelial Cells
,”
Biophys. J.
,
78
, pp.
1725
1735
.
6.
Mathur
,
A. B.
,
Truskey
,
G. A.
, and
Reichert
,
W. M.
,
2000
, “
Total Internal Reflection Microscopy and Atomic Force Microscopy (TIRFM-AFM) to Study Stress Transduction Mechanisms in Endothelial Cells
,”
Crit. Rev. Biomed. Eng.
,
28
, pp.
197
202
.
7.
Juliano
,
R. L.
, and
Haskill
,
S.
,
1993
, “
Signal Transduction From the Extracellular Matrix
,”
J. Cell Biol.
,
120
, pp.
577
585
.
8.
Davies
,
P. F.
,
1995
, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Res.
,
75
, pp.
519
560
.
9.
Maniotis
,
A. J.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
,
1997
, “
Demonstration of Mechanical Connections Between Integrins, Cytoskeletal Filaments, and Nucleoplasm That Stabilize Nuclear Structure
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
, pp.
849
854
.
10.
Thomas
,
C. H.
,
Collier
,
J. H.
,
Sfeir
,
C. S.
, and
Healy
,
K. E.
,
2002
, “
Engineering Gene Expression and Protein Synthesis by Modulation of Nuclear Shape
,”
Proc. Natl. Acad. Sci. U.S.A.
,
99
, pp.
1972
1977
.
11.
Chicurel
,
M. E.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
,
1998
, “
Cellular Control Lies in the Balance of Forces
,”
Curr. Opin. Cell Biol.
,
10
, pp.
232
239
.
12.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2003
, “
Cells Lying on a bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
, pp.
1484
1489
.
13.
Lee
,
J.
,
Leonard
,
M.
,
Oliver
,
T.
,
Ishihara
,
A.
, and
Jacobson
,
K.
,
1994
, “
Traction Forces Generated by Locomoting Keratocytes
,”
J. Cell Biol.
,
127
, pp.
1957
1964
.
14.
Oliver
,
T.
,
Dembo
,
M.
, and
Jacobson
,
K.
,
1995
, “
Traction Forces in Locomoting Cells
,”
Cell Motil. Cytoskeleton
,
31
, pp.
225
240
.
15.
Balaban
,
N. Q.
,
Schwarz
,
U. S.
,
Riveline
,
D.
,
Goichberg
,
P.
,
Tzur
,
G.
,
Sabanay
,
I.
,
Mahalu
,
D.
,
Safran
,
S.
,
Bershadsky
,
A.
,
Addadi
,
L.
, and
Geiger
,
B.
,
2001
, “
Force and Focal Adhesion Assembly: A Close Relationship Studied Using Elastic Micropatterned Substrates
,”
Nat. Cell Biol.
,
3
, pp.
466
472
.
16.
Wang
,
H. B.
,
Dembo
,
M.
,
Hanks
,
S. K.
, and
Wang
,
Y.-L.
,
2001
, “
Focal Adhesion Kinase in Involved in Mechanosensing During Fibroblast Migration
,”
Proc. Natl. Acad. Sci. U.S.A.
,
98
, pp.
11295
11300
.
17.
Ingber
,
D.
,
1997
, “
Tensegrity: The Architectural Basis of Cellular Mechanotransduction
,”
Annu. Rev. Physiol.
,
59
, pp.
575
599
.
18.
Girard
,
P. R.
, and
Nerem
,
R. M.
,
1995
, “
Shear Stress Modulates Endothelial Cell Morphology and F-Actin Organization Through the Regulation of Focal Adhesion-Associated Proteins
,”
J. Cell Physiol.
,
163
, pp.
179
193
.
19.
Finer
,
J. T.
,
Simmons
,
R. M.
, and
Spudich
,
J. A.
,
1994
, “
Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps
,”
Nature (London)
,
368
, pp.
113
119
.
20.
Helmke
,
B. P.
,
Goldman
,
R. D.
, and
Davies
,
P. F.
,
2000
, “
Rapid Displacement of Vimentin Intermediate Filaments in Living Endothelial Cells Exposed to Flow
,”
Circ. Res.
,
86
, pp.
745
752
.
21.
Helmke
,
B. P.
,
Rosen
,
A. B.
, and
Davies
,
P. F.
,
2003
, “
Mapping Mechanical Strain of an Endogenous Cytoskeletal Network in Living Endothelial Cells
,”
Biophys. J.
,
84
, pp.
2691
2699
.
22.
Dembo
,
M.
,
Maltrud
,
M.
, and
Harlow
,
F.
,
1986
, “
Numerical Studies of Unreactive Contractile Networks
,”
Biophys. J.
,
50
, pp.
123
137
.
23.
Satcher
,
R. L.
, and
Dewey
,
C. F.
,
1996
, “
Theoretical Estimates of Mechanical Properties of the Endothelial Cell Cytoskeleton
,”
Biophys. J.
,
71
, pp.
109
118
.
24.
Boey
,
S. K.
,
Beal
,
D. H.
, and
Discher
,
D. E.
,
1998
, “
Simulations of the Erythrocyte Cytoskeleton at Large Deformation. I. Microscopic Models
,”
Biophys. J.
,
75
, pp.
1573
1583
.
25.
Hansen
,
J. C.
,
Skalak
,
R.
,
Chien
,
S.
, and
Hoger
,
A.
,
1997
, “
Influence of Network Topology on the Elasticity of the Red Blood Cell Membrane Skeleton
,”
Biophys. J.
,
72
, pp.
2369
2381
.
26.
Hansen
,
J. C.
,
Skalak
,
R.
,
Chien
,
S.
, and
Hoger
,
A.
,
1997
, “
Spectrin Properties and the Elasticity of the Red Blood Cell Membrane Skeleton
,”
Biorheology
,
34
, pp.
327
348
.
27.
Civelekoglu
,
G.
, and
Edelstein-Keshet
,
L.
,
1994
, “
Modelling the Dynamics of F-Actin in the Cell
,”
Bull. Math. Biol.
,
56
, pp.
587
616
.
28.
Geigant
,
E.
,
Ladizhansky
,
K.
, and
Mogilner
,
A.
,
1998
, “
An Integro-Differential Model for Orientational Distribution of F-Actin in Cells
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
59
, pp.
787
809
.
29.
Spector
,
A. A.
,
Ameen
,
M.
,
Charalambides
,
P. G.
, and
Popel
,
A. S.
,
2002
, “
Nanostructure, Effective Properties, and Deformation Pattern of the Cochlear Outer Hair Cell Cytoskeleton
,”
J. Biomech. Eng.
,
124
, pp.
180
187
.
30.
Guilak
,
F.
,
Tedrow
,
J. R.
, and
Burgkart
,
R.
,
2000
, “
Viscoelastic Properties of the Cell Nucleus
,”
Biochem. Biophys. Res. Commun.
,
269
, pp.
781
786
.
31.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J. J.
,
2002
, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
,
35
, pp.
177
187
.
32.
Theret
,
D. P.
,
Levesque
,
M. J.
,
Sato
,
M.
,
Nerem
,
R. M.
, and
Wheeler
,
L. T.
,
1988
, “
The Application of a Homogenous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements
,”
J. Biomech. Eng.
,
110
, pp.
190
199
.
33.
Shafrir
,
Y.
, and
Forgacs
,
G.
,
2002
, “
Mechanotransduction Through the Cytoskeleton
,”
Am. J. Physiol. Cell Physiol.
,
282
, pp.
C479–C486
C479–C486
.
34.
Hazel
,
A. L.
, and
Pedley
,
T. J.
,
2000
, “
Vascular Endothelial Cells Minimize the Total Force on Their Nuclei
,”
Biophys. J.
,
78
, pp.
47
54
.
35.
Pienta
,
K. J.
, and
Coffey
,
D. S.
,
1992
, “
Nuclear-Cytoskeletal Interactions: Evidence for Physical Connections Between the Nucleus and Cell Periphery and Their Alteration by Transformation
,”
J. Cell. Biochem.
,
49
, pp.
357
365
.
36.
Sims
,
J. R.
,
Karp
,
S.
, and
Ingber
,
D. E.
,
1992
, “
Altering the Cellular Mechanical Force Balance Results in Integrated Changes in Cell, Cytoskeletal and Nuclear Shape
,”
J. Cell. Sci.
,
103
, pp.
1215
1222
.
37.
Ogden, R. W., 1997, Nonlinear Elastic Deformations, 2nd ed., Dover, Mineola.
38.
Guilak
,
F.
,
1995
, “
Compression-Induced Changes in the Shape and Volume of the Chondrocyte Nucleus
,”
J. Biomech.
,
28
, pp.
1529
1541
.
39.
Harris
,
A. K.
,
Wild
,
P.
, and
Stopak
,
D.
,
1980
, “
Silicone Rubber Substrata: a New Wrinkle in the Study of Cell Locomotion
,”
Science
,
208
, pp.
177
179
.
40.
Harris
,
A. K.
,
Stopak
,
D.
, and
Wild
,
P.
,
1981
, “
Fibroblast Traction as a Mechanism for Collage Morphogenesis
,”
Nature (London)
,
290
, pp.
249
251
.
41.
Burton
,
K.
, and
Taylor
,
D. L.
,
1997
, “
Traction Forces of Cytokinesis Measured With Optically Modified Substrata
,”
Nature (London)
,
385
, pp.
450
454
.
42.
Pelham
,
R. J.
, and
Wang
,
Y.-L.
,
1997
, “
Cell Locomotion and Focal Adhesions are Regulated by Substrate Flexibility
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
, pp.
13661
13665
.
43.
Beningo
,
K. A.
, and
Wang
,
Y.-L.
,
2002
, “
Flexible Polyacrylamide Substrates for the Analysis of Mechanical Interactions at Cell-Substrate Adhesions
,”
Methods Cell Biol.
,
69
, pp.
325
339
.
44.
Galbraith
,
C. G.
, and
Sheetz
,
M. P.
,
1997
, “
A Micromachined Device Provides a New Bend on Fibroblast Traction Forces
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
, pp.
9114
9118
.
45.
Reinhart-King
,
C. A.
,
Dembo
,
M.
, and
Hammer
,
D. A.
,
2003
, “
Endothelial Cell Traction Forces on RGD-Derivatized Polyacrylamide Substrata
,”
Langmuir
,
19
, pp.
1573
1579
.
You do not currently have access to this content.