Magnetic resonance (MR) imaging has been widely used to evaluate the thickness and volume of articular cartilage both in vivo and in vitro. While morphological information on the cartilage can be obtained using MR images, image processing for extracting geometric boundaries of the cartilage may introduce variations in the thickness of the cartilage. To evaluate the variability of using MR images to construct finite element (FE) knee cartilage models, five investigators independently digitized the same set of MR images of a human knee. The topology of cartilage thickness was determined using a minimal distance algorithm. Less than 8 percent variation in cartilage thickness was observed from the digitized data. The effect of changes in cartilage thickness on contact stress analysis was then investigated using five FE models of the knee. One FE model (average FE model) was constructed using the mean values of the digitized contours of the cartilage, and the other four were constructed by varying the thickness of the average FE model by ±5percent and ±10percent, respectively. The results demonstrated that under axial tibial compressive loading (up to 1400 N), variations of cartilage thickness caused by digitization of MR images may result in a difference of approximately 10 percent in peak contact stresses (surface pressure, von Mises stress, and hydrostatic pressure) in the cartilage. A reduction of cartilage thickness caused increases of contact stresses, while an increase of cartilage thickness reduced contact stresses. Furthermore, the effect of variation of material properties of the cartilage on contact stress analysis was investigated. The peak contact stress increased almost linearly with the Young’s modulus of the cartilage. The peak von Mises stress was dramatically reduced when the Poisson’s ratio was increased from 0.05 to 0.49 under an axial compressive load of 1400 N, while peak hydrostatic pressure was dramatically increased. Peak surface pressure was also increased with the Poisson’s ratio, but with a lower magnitude compared to von Mises stress and hydrostatic pressure. In conclusion, the imaging process may cause 10 percent variations in peak contact stress, and the predicted stress distribution is sensitive to the accuracy of the material properties of the cartilage model, especially to the variation of Poisson’s ratio.

1.
Eckstein
,
F.
,
Adam
,
C.
,
Sittek
,
H.
,
Becker
,
C.
,
Milz
,
S. E. S.
,
Reiser
,
M.
, and
Putz
,
R.
,
1997
, “
Non-Invasive Determination of Cartilage Thickness Throughout Joint Surfaces Using Magnetic Resonance Imaging
,”
J. Biomech.
,
30
, No.
3
, pp.
285
289
.
2.
Kiviranta
,
I.
,
Lyyra
,
T.
,
Vaatainen
,
U.
,
Seuri
,
R.
,
Jaroma
,
H.
,
Tammi
,
M.
, and
Jurvelin
,
J.
,
1987
, “
Knee Joint Articular Cartilage Shows General Softening in Patients With Chondromalacia of the Patella
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
33
, p.
197
197
.
3.
Abdel-Rahman
,
E.
, and
Hefzy
,
M. S.
,
1993
, “
A Two-Dimensional Dynamic Anatomical Model of the Human Knee Joint
,”
ASME J. Biomech. Eng.
,
115
, pp.
357
365
.
4.
Andriacchi
,
T. P.
,
Mikosz
,
R. P.
,
Hampton
,
S. J.
, and
Galante
,
J. O.
,
1983
, “
Model Studies of the Stiffness Characteristics of the Human Knee Joint
,”
J. Biomech.
,
16
, pp.
23
29
.
5.
Bach
,
B. R.
,
Daluga
,
D. J.
,
Mikosz
,
R.
,
Andriacchi
,
T. P.
, and
Seidl
,
R.
,
1992
, “
Force Displacement Characteristics of the Posterior Cruciate Ligament
,”
Am. J. Sports Med.
,
20
, pp.
67
72
.
6.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
29
, No.
7
, pp.
955
961
.
7.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three Dimensional Model of the Knee
,”
J. Biomech.
,
24
,
1019
1031
.
8.
Crowninshield
,
R.
,
Pope
,
M. H.
, and
Johnson
,
R. J.
,
1976
, “
An Analytical Model of the Knee
,”
J. Biomech.
,
9
,
397
405
.
9.
Essinger
,
J. R.
,
Leyvarz
,
P. F.
,
Heegard
,
J. H.
, and
Robertson
,
D. D.
,
1989
, “
A Mathematical Model for the Evaluation of the Behavior During Flexion of Condylar-Type Knee Prostheses
,”
J. Biomech.
,
22
, No.
11/12
, pp.
1229
1241
.
10.
Gibson
,
M.
,
Mikosz
,
R.
,
Reider
,
B.
, and
Andriacchi
,
T.
,
1986
, “
Analysis of the Muller Anterolateral Femorotibial Ligament Reconstruction Using a Computerized Knee Model
,”
Am. J. Sports Med.
,
14
, pp.
371
375
.
11.
Li
,
G.
,
Kawamura
,
K.
,
Barrance
,
P. J.
, and
Chao
,
E. Y. S.
,
1995
, “
Muscle Recruitment During Knee Isometric Extension Exercise
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
41
, p.
696
696
.
12.
O’Conner
,
J. J.
,
1993
, “
Can Muscle Co-Contraction Protect Knee Ligaments After Injury?
J. Bone Joint Surg. Br.
,
75B
, No.
1
, pp.
41
48
.
13.
Shelburne
,
K. B.
, and
Pandy
,
M.
,
1997
, “
A Musculoskeletal Model of the Knee for Evaluating Ligament Forces During Isometric Contractions
,”
J. Biomech.
,
30
, No.
2
, pp.
163
176
.
14.
Tumer
,
S. T.
, and
Engin
,
A. E.
,
1993
, “
Three-Body Segment Dynamic Model of the Human Knee
,”
ASME J. Biomech. Eng.
,
115
, pp.
350
356
.
15.
Wismans
,
J.
,
Veldpaus
,
F.
,
Janssen
,
J.
,
Huson
,
A.
, and
Struben
,
P.
,
1980
, “
A Three-Dimensional Mathematical Model of the Knee Joint
,”
J. Biomech.
,
13
, pp.
677
685
.
16.
Zavatsky
,
A.
, and
O’Connor
,
J.
,
1993
, “
Ligament Forces at the Knee During Isometric Quadriceps Contractions
,”
Proc. Inst. Mech. Eng.
,
207
, pp.
7
18
.
17.
Huiskes
,
R.
,
Kremers
,
J.
,
de Lange
,
A.
,
Woltring
,
H. J.
,
Selvik
,
G.
, and
Van Rens
,
T. J. G.
,
1985
, “
Analytical Stereophotogrammetric Determination of Three-Dimensional Knee-Joint Geometry
,”
J. Biomech.
,
18
, pp.
559
570
.
18.
Ateshian
,
G. A.
,
Kwak
,
S. D.
,
Soslowsky
,
L. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
,
1993
, “
Contact Area Measurements in Diarthrodial Joints: A Comparison With a New Stereophotogrammetry Method
,”
Trans. ORS
,
39
, p.
347
347
.
19.
Ateshian
,
G. A.
,
Rosenwasser
,
M. P.
, and
Mow
,
V. C.
,
1992
, “
Curvature Characteristics and Congruence of the Thumb Carpometacarpal Joint
,”
J. Biomech.
,
25
, pp.
591
608
.
20.
Cohen
,
Z. A.
,
McCarthy
,
D. M.
,
Ateshian
,
G. A.
,
Kwak
,
S. D.
et al.
,
1997
, “
In Vivo and in Vitro Knee Joint Cartilage Topography, Thickness, and Contact Areas From MRI
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
22
, p.
625
625
.
21.
Xu
,
L.
,
Cohen
,
N. P.
,
Roglic
,
H.
,
Roh
,
M.
,
Strauch
,
R. J.
,
Rosenwasser
,
M. P.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
1998
, “
A Parametric Analysis of Laxity in the Thumb Carpometacarpal Joint
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
23
, p.
288
288
.
22.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1995
, “
Biomechanics of the Human Knee Joint in Compression: Reconstruction, Mesh Generation and Finite Element Analysis
,”
The Knee
,
2
, pp.
69
79
.
23.
Haut
,
T.
,
Hull
,
M.
, and
Howell
,
S.
,
1998
, “
A High-Accuracy Three-Dimensional Coordinate Digitizing System for Reconstructing the Geometry of Diarthrodial Joints
,”
J. Biomech.
,
31
, pp.
571
577
.
24.
Beltran
,
J.
,
Caudill
,
J. L.
,
Herman
,
L. A.
et al.
,
1987
, “
Rheumatoid Arthritis: MR Imaging Manifestations
,”
Radiology
,
165
, pp.
153
157
.
25.
Mink
,
J. H.
, and
Deutsch
,
A. L.
,
1989
, “
Occult Cartilage and Bone Injuries of the Knee: Detection, Classification, and Assessment With MR Imaging
,”
Radiology
,
170
, pp.
823
829
.
26.
Yulish
,
B. S.
,
Lieberman
,
J. M.
,
Strandjord
,
S. E.
et al.
,
1987
, “
Hemophilic Arthropathy: Assessment With MR Imaging
,”
Radiology
,
164
, pp.
759
762
.
27.
Chandnani
,
V. P.
,
Ho
,
C.
,
Chu
,
P.
et al.
,
1991
, “
Knee Hyaline Cartilage Evaluated With MR Imaging: A Cadaveric Study Involving Multiple Imaging Sequences and Intraarticular Injection of Gadolinium and Saline Solution
,”
Radiology
,
178
, pp.
557
561
.
28.
Cohen, Z. A., McCarthy, D. M., Ateshian, G. A., Kwak, S. D., et al.., 1997, “Knee Joint Cartilage Topography, Thickness and Contact Areas: Validation of Measurements From MRI,” Proc. Bioengineering Conference, ASME BED-Vol. 35, pp. 45–46.
29.
Freeman
,
D. M.
,
Bergman
,
G.
, and
Glover
,
G.
,
1997
, “
Short TE MR Microscopy: Accurate Measurement and Zonal Differentiation of Normal Hyaline Cartilage
,”
Magn. Reson. Med.
,
38
, pp.
72
81
.
30.
Peterfy
,
C. G.
,
Van Dijke
,
C. F.
,
Janzen
,
D. L.
et al.
,
1994
, “
Quantification of Articular Cartilage in the Knee With Pulsed Saturation Transfer Subtraction and Fat-Suppressed MR Imaging: Optimization and Validation
,”
Radiology
,
192
, pp.
485
491
.
31.
Piplani
,
M. A.
,
Disler
,
D. G.
,
McCauley
,
T. R.
et al.
,
1996
, “
Articular Cartilage Volume in the Knee: Semi-Automated Determination for Three-Dimensional Reformations of MR Images
,”
Radiology
,
198
, pp.
855
859
.
32.
Solloway
,
S.
,
Hutchinson
,
C. E.
,
Waterton
,
J. C.
, and
Taylor
,
C. J.
,
1997
, “
The Use of Active Shape Models for Making Thickness Measurements of Articular Cartilage From MR Images
,”
Magn. Reson. Med.
,
37
, pp.
943
952
.
33.
Van Leersum
,
M. D.
,
Schweitzer
,
M. E.
,
Gannon
,
F.
et al.
,
1995
, “
Thickness of Patellofemoral Articular Cartilage as Measured on MR Imaging: Sequence Comparison of Accuracy, Reproducibility, and Interobserver Variation
,”
Skeletal Radiol.
,
24
, pp.
431
435
.
34.
Li
,
G.
,
Gil
,
J.
, and
Woo
,
S. L. Y.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
,
121
, pp.
657
662
.
35.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle–Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
, No.
6
, pp.
425
432
.
36.
Taylor
,
S. J. G.
,
Walker
,
P. S.
,
Perry
,
J. S.
,
Cannon
,
S. R.
, and
Woledge
,
R.
,
1998
, “
The Forces in the Distal Femur and the Knee During Walking and Other Activities Measured by Telemetry
,”
J. Arthroplasty
,
13
, pp.
428
437
.
37.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1987
, “
Biphasic Indentation of Articular Cartilage — I. Theoretical Analysis
,”
J. Biomech.
,
20
, pp.
703
714
.
38.
Mow
,
V.
,
Ateshian
,
G.
, and
Spilker
,
R.
,
1993
, “
Biomechanics of Diarthrodial Joints: A Review of Twenty Years of Progress
,”
ASME J. Biomech. Eng.
,
115
, pp.
460
467
.
39.
ABAQUS, 1997, ABAQUS/Standard User’s Manual, Hibbitt, Karlsson & Sorensen, Inc.
40.
Sutherland
,
C. J.
,
Bresina
,
S. J.
, and
Gayou
,
D. E.
,
1994
, “
Use of General Purpose Mechanical Computer Assisted Engineering Software in Orthopedic Surgical Planning: Advantages and Limitations
,”
Comput. Med. Imaging Graph.
,
18
, pp.
435
442
.
41.
Tieschky
,
M.
,
Faber
,
S.
,
Haubner
,
M.
,
Kolem
,
H.
,
Schulte
,
E.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
,
1997
, “
Reproducibility of Patella Cartilage Thickness Patterns in the Living, Using a Fat-Suppressed MRI Sequence With Short Acquisition Time and Three-Dimensional Data Processing
,”
J. Orthop. Res.
,
18
, pp.
808
813
.
42.
Anderson
,
D. D.
,
Brown
,
T. D.
, and
Radin
,
E. L.
,
1993
, “
The Influence of Basal Cartilage Calcification on Dynamic Juxtaarticular Stress Transmission
,”
Clin. Orthop.
,
286
, pp.
298
307
.
43.
Fukubayashi
,
T.
, and
Kurosawa
,
H.
,
1980
, “
The Contact Area and Pressure Distribution Pattern of the Knee
,”
Acta Orthop. Scand.
,
51
, pp.
871
879
.
44.
Kurosawa
,
H.
,
Fukubayashi
,
T.
, and
Nakajima
,
H.
,
1980
, “
Load-Bearing Mode of the Knee Joint, Physical Behavior of the Knee With or Without Menisci
,”
Clin. Orthop.
,
149
, pp.
283
290
.
45.
Donzelli
,
P. S.
,
Spilker
,
R. L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
1999
, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure
,”
J. Biomech.
,
32
, pp.
1037
1047
.
46.
Li
,
G.
,
Sakamoto
,
M.
, and
Chao
,
E. Y. S.
,
1997
, “
A Comparison of Different Methods in Predicting Static Pressure Distribution in Articulating Joints
,”
J. Biomech.
,
30
, pp.
635
638
.
47.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
48.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
,
1991
, “
Interspecies Comparisons of In-Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
,
9
, pp.
330
340
.
49.
Bylski-Austrow
,
D. I.
,
Ciarelli
,
M. J.
,
Kayner
,
D. C.
,
Matthews
,
L. S.
,
Goldstei
,
S. A.
,
1994
, “
Displacements of the Menisci Under Joint Load: An in Vitro Study in Human Knees
,”
J. Biomech.
,
27
, pp.
421
431
.
50.
Donahue, T. L., Hull, M. L., Rashid, M. S., and Jacobs, C. R., 2000, “Finite Element Model of the Knee to Study Tibio-Femoral Contact Mechanics,” Advances in Bioengineering, T. Conway, ed., ASME BED-Vol. 49, pp. 155–156.
51.
Ganley
,
T
,
Arnold
,
C
,
McKernan
,
D
,
Gregg
,
J.
, and
Cooney
,
T.
,
2000
, “
The Impact of Loading on Deformation About Posteromedial Meniscal Tears
,”
Orthopedics
,
23
, No.
6
, pp.
597
601
.
52.
Spilker
,
R. L.
,
Donzelli
,
P. S.
, and
Mow
,
V. C.
,
1992
, “
A Transversely Isotropic Biphasic Finite Element Model of the Meniscus
,”
J. Biomech.
,
25
, pp.
1027
1045
.
53.
Zhang, H., Totterman, S., Perucchio, R., and Lerner, A. L., 1999, “Magnetic Resonance Image Based Three-Dimensional Poroelastic Finite Element Model of Tibio-Menisco-Femoral Contact,” Proc. Annual Meeting of American Society of Biomechanics, Vol. 23, Pittsburgh, PA.
54.
Zhang, H., Totterman, S. M. S., Perucchio, R., and Lerner, A. E., 2000, “Motion of the Meniscus During Passive Knee Flexion Predicted by a Three-Dimensional Finite Element Model Based on MR Imaging,” Advances in Bioengineering, T. Conway, ed., ASME BED-Vol. 49, pp. 161–162.
You do not currently have access to this content.