Vascular accesses (VA) for hemodialysis are usually created by native arteriovenous fistulas (AVF) or synthetic grafts. Maintaining patency of VA continues to be a major problem for patients with end-stage renal disease, since in these vessels thrombosis and intimal hyperplasia often occur. These lesions are frequently associated with disturbed flow that develops near bifurcations or sharp curvatures. We explored the possibility of investigating blood flow dynamics in a patient-specific model of end-to-end native AVF using computational fluid dynamics (CFD). Using digital subtraction angiographies of an AVF, we generated a three-dimensional meshwork for numerical analysis of blood flow. As input condition, a time-dependent blood waveform in the radial artery was derived from centerline velocity obtained during echo-color-Doppler ultrasound examination. The finite element solution was calculated using a fluid-dynamic software package. In the straight, afferent side of the radial artery wall shear stress ranged between 20 and 36 dynes/cm2, while on the inner surface of the bending zone it increased up to 350 dynes/cm2. On the venous side, proximal to the anastomosis, wall shear stress was oscillating between negative and positive values (from −12 dynes/cm2 to 112 dynes/cm2), while distal from the anastomosis, the wall shear stress returned within the physiologic range, ranging from 8 to 22 dynes/cm2. Areas of the vessel wall with very high shear stress gradient were identified on the bending zone of the radial artery and on the venous side, after the arteriovenous shunt. Secondary blood flows were also observed in these regions. CFD gave a detailed description of blood flow field and showed that this approach can be used for patient-specific analysis of blood vessels, to understand better the role of local hemodynamic conditions in the development of vascular lesions.

1.
Feldman
,
H. I.
,
Kobrin
,
S.
, and
Wasserstein
,
A.
,
1996
, “
Hemodialysis Vascular Access Morbidity
,”
J. Am. Soc. Nephrol.
,
7
, pp.
523
535
.
2.
Yerdel
,
M. A.
,
Kesenci
,
M.
,
Yazicioglu
,
K. M.
,
Do¨seyen
,
Z.
,
Tu¨rkcapar
,
A. G.
, and
Anadol
,
E.
,
1997
, “
Effect of Haemodynamic Variables on Surgically Created Arteriovenous Fistula Flow
,”
Nephrol. Dial Transplant
,
12
, pp.
1684
1688
.
3.
Kanterman
,
R. Y.
,
Vesely
,
T. M.
,
Pilgram
,
T. K.
,
Guy
,
B. W.
,
Windus
,
D. W.
, and
Picus
,
D.
,
1995
, “
Dialysis Access Grafts: Anatomic Location of Venous Stenosis and Results of Angioplasty
,”
Radiology
,
195
, pp.
135
139
.
4.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1993
, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
,
115
, pp.
588
594
.
5.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation
,”
Arteriosclerosis
5
, No.
3
, pp.
293
302
.
6.
Salam
,
T. A.
,
Lumsden
,
A. B.
,
Suggs
,
W. D.
, and
Ku
,
D. N.
,
1996
, “
Low Shear Stress Promotes Intimal Hyperplasia Thickening
,”
J. Vascular Investigation
,
2
, No.
1
, pp.
12
22
.
7.
Hehrlein
,
C.
,
1995
, “
How do AV Fistulae Lose Function? The Role of Haemodynamics, Vascular Remodeling, and Intimal Hyperplasia
,”
Nephrol. Dial Transplant
,
10
, No.
8
, pp.
1287
1290
.
8.
Dobrin
,
P. B.
,
Littooy
,
F. N.
, and
Endean
,
E. D.
,
1989
, “
Mechanical Factors Predisposing to Intimal Hyperplasia and Medial Thickening in Autogenous Vein Grafts
,”
Surgery
,
105
, pp.
393
400
.
9.
Fillinger
,
M. F.
,
Reinitz
,
E. R.
,
Schwartz
,
R. A.
,
Resetarits
,
D. E.
,
Paskanik
,
A. M.
, and
Bredenberg
,
C. E.
,
1989
, “
Beneficial Effects of Banding on Venous Intimal-Medial Hyperplasia in Arteriovenous Loop Grafts
,”
Am. J. Surg.
,
158
, No.
2
, pp.
87
94
.
10.
Girerd
,
X.
,
London
,
G.
,
Boutouyrie
,
P.
,
Mourad
,
J. J.
,
Safar
,
M.
, and
Laurent
,
S.
,
1996
, “
Remodeling of the Radial Artery in Response to a Chronic Increase in Shear Stress
,”
Hypertension
,
27
, No.
3
, pp.
799
803
.
11.
Vitali
,
A.
,
Salmoiraghi
,
P.
,
Butti
,
I.
,
Pompei
,
L.
,
Sarti
,
E.
,
Caverni
,
L.
,
Petroboni
,
E.
,
Merli
,
R.
, and
Remuzzi
,
A.
,
2000
, “
Localization of Cerebral Arterovenous Malformations Using Digital Angiography
,”
Med. Phys.
,
27
, No.
9
, pp.
2024
2030
.
12.
Schroeder, W., Martin, K., and Lorensen, B., 1998, The Visualization Toolkit: An Object Oriented Approach to 3D Graphics, 2nd ed., Prentice-Hall, New Jersey.
13.
Lorensen
,
E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
Comput. Graph.
,
21
, No.
4
, pp.
163
169
.
14.
Deen, W. M., 1998, Analysis of Transport Phenomena, Oxford University Press, New York.
15.
FIDAP User’s Manual, 1998, FIDAP 8, Fluent Inc., 10 Cavendish Court, Lebanon, NH.
16.
Cokelet, G. R., 1987, “The Rheology and Tube Flow of Blood,” in: Handbook of Bioengineering, R. Skalak and S. Chien, eds., McGraw-Hill, New York.
17.
Kawai, H., Fukada, E., Ibe, T., and Shono, H., 1965, “A New Capillary Viscometer for Measuring the Viscosity of Small Amounts of Blood,” in: Proc., Fourth International Congress on Rheology, A. L. Copley, ed., Interscience, New York, pp. 281–297.
18.
Brooks
,
D. E.
,
Goodwin
,
J. W.
, and
Seaman
,
G. V. F.
,
1970
, “
Interactions Among Erythrocytes Under Shear
,”
J. Appl. Physiol.
,
28
, pp.
172
177
.
19.
Gijsen
,
F. J. H.
,
Brands
,
P. J.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1998
, “
Assessment of Wall Shear Rate Measurements With Ultrasound
,”
J. Vascular Investigation
,
4
, pp.
187
196
.
20.
Caro
,
C. G.
,
Parker
,
K. H.
, and
Doorly
,
D. J.
,
1995
, “
Essentials of Blood Flow
,”
Perfusion
,
10
, No.
3
, pp.
131
134
.
21.
Prischl
,
F. C.
,
Kirchgatterer
,
A.
,
Brandsta¨tter
,
E.
,
Wallner
,
M.
,
Baldinger
,
C.
,
Roithinger
,
F. X.
, and
Kramar
,
R.
,
1995
, “
Parameters of Prognostic Relevance to the Patency of Vascular Access in Hemodialysis Patients
,”
J. Am. Soc. Nephrol.
,
6
, pp.
1613
1618
.
22.
Davies
,
P. F.
,
Remuzzi
,
A.
,
Gordon
,
E. J.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
,
1986
, “
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover in Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
,
83
, pp.
2114
2117
.
23.
Friedman
,
M. H.
,
Deters
,
O. J.
,
Bargeron
,
C. B.
,
Hutchins
,
G. M.
, and
Mark
,
F. F.
,
1986
, “
Shear-Dependent Thickening of the Human Arterial Intima
,”
Atherosclerosis
,
60
, pp.
161
171
.
24.
Nerem
,
R. M.
,
1991
, “
Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis
,”
ASME J. Biomech. Eng.
,
114
, pp.
274
282
.
25.
Moore
,
J. E.
, Jr.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
,
1994
, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
,
110
, pp.
225
240
.
26.
Remuzzi, A., Ene-Iordache, B., Veneziani, A., Pata, R., Caverni., L., and Belloni, G., 1996, “Three-Dimensional Geometrical Models of Carotid Bifurcation From Digital Angiography,” Books of Abstracts, Sloten, J. V., Lowet, G., Van Audekercke, R., and Van der Perre, G. eds., 10th Conference of the European Society of Biomechanics, Leuven, Aug. 28–31, 1996.
27.
Perktold
,
K.
, and
Rappitsch
,
G.
,
1995
, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
,
28
, No.
7
, pp.
845
856
.
28.
DePaola
,
N.
,
Gimbrone
,
M. A.
, Jr.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
, Jr.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
,
12
, No.
11
, pp.
1254
1257
.
29.
DePaola
,
N.
,
Davies
,
P. F.
,
Pritchard
,
W. F.
,
Florez
,
L.
,
Harbeck
,
N.
, and
Polacek
,
D. C.
,
1999
, “
Spatial and Temporal Regulation of Gap Junction Connexin43 in Vascular Endothelial Cells Exposed to Controlled Disturbed Flows In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
,
96
, pp.
3154
3159
.
You do not currently have access to this content.