The formation of distal anastomotic intimal hyperplasia (IH), one common mode of bypass graft failure, has been shown to occur in the areas of disturbed flow particular to this site. The nature of the flow in the segment of artery proximal to the distal anastomosis varies from case to case depending on the clinical situation presented. A partial stenosis of a bypassed arterial segment may allow residual prograde flow through the proximal artery entering the distal anastomosis of the graft. A complete stenosis may allow for zero flow in the proximal artery segment or retrograde flow due to the presence of small collateral vessels upstream. Although a number of investigations on the hemodynamics at the distal anastomosis of an end-to-side bypass graft have been conducted, there has not been a uniform treatment of the proximal artery flow condition. As a result, direct comparison of results from study to study may not be appropriate. The purpose of this work was to perform a three-dimensional computational investigation to study the effect of the proximal artery flow condition (i.e., prograde, zero, and retrograde flow) on the hemodynamics at the distal end-to-side anastomosis. We used the finite volume method to solve the full Navier–Stokes equations for steady flow through an idealized geometry of the distal anastomosis. We calculated the flow field and local wall shear stress (WSS) and WSS gradient (WSSG) everywhere in the domain. We also calculated the severity parameter (SP), a quantification of hemodynamic variation, at the anastomosis. Our model showed a marked difference in both the magnitude and spatial distribution of WSS and WSSG. For example, the maximum WSS magnitude on the floor of the artery proximal to the anastomosis for the prograde and zero flow cases is 1.8 and 3.9 respectively, while it is increased to 10.3 in the retrograde flow case. Similarly, the maximum value of WSSG magnitude on the floor of the artery proximal to the anastomosis for the prograde flow case is 4.9 while it is increased to 13.6 and 24.2 respectively, in the zero and retrograde flow cases. The value of SP is highest for the retrograde flow case (13.7 and 8.1 and 12.1 percent lower than this for the prograde (12.6 and zero (12.0 flow cases, respectively. Our model results suggest that the flow condition in the proximal artery is an important determinant of the hemodynamics at the distal anastomosis of end-to-side vascular bypass grafts. Because hemodynamic forces affect the response of vascular endo- thelial cells, the flow situation in the proximal artery may affect IH formation and, therefore, long-term graft patency. Since surgeons have some control over the flow condition in the proximal artery, results from this study could help determine which flow condition is clinically optimal.
Skip Nav Destination
Article navigation
June 2001
Technical Papers
The Effect of Proximal Artery Flow on the Hemodynamics at the Distal Anastomosis of a Vascular Bypass Graft: Computational Study
Stephanie M. Kute,
Stephanie M. Kute
Departments of Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
Search for other works by this author on:
David A. Vorp, Mem. ASME
David A. Vorp, Mem. ASME
Departments of Surgery, Bioengineering, and Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15213
Search for other works by this author on:
Stephanie M. Kute
Departments of Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
David A. Vorp, Mem. ASME
Departments of Surgery, Bioengineering, and Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15213
Contributed by the Bioengineering Division for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received by the Bioengineering Division February 13, 2000; revised manuscript received January 29, 2001. Associate Editor: J. B. Grotberg.
J Biomech Eng. Jun 2001, 123(3): 277-283 (7 pages)
Published Online: January 29, 2001
Article history
Received:
February 13, 2000
Revised:
January 29, 2001
Citation
Kute, S. M., and Vorp, D. A. (January 29, 2001). "The Effect of Proximal Artery Flow on the Hemodynamics at the Distal Anastomosis of a Vascular Bypass Graft: Computational Study ." ASME. J Biomech Eng. June 2001; 123(3): 277–283. https://doi.org/10.1115/1.1374203
Download citation file:
Get Email Alerts
Related Articles
Particle-Hemodynamics Simulations and Design Options for Surgical Reconstruction of Diseased Carotid Artery Bifurcations
J Biomech Eng (April,2004)
Fluid Flow Structure in Arterial Bypass Anastomosis
J Biomech Eng (August,2005)
Numerical Simulation of Wall Shear Stress Conditions and Platelet Localization in Realistic End-to-Side Arterial Anastomoses
J Biomech Eng (October,2003)
Neonatal Aortic Arch Hemodynamics and Perfusion During Cardiopulmonary Bypass
J Biomech Eng (December,2008)
Related Chapters
Fluid Flow Applications
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Based on Blood Vessel Edge Feature Fundus Fluorescein Angiography Image Splicing
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)