Preclinical testing of orthopaedic implants is becoming increasingly important to eliminate inferior designs before animal experiments or clinical trials are begun. Preclinical tests can include both laboratory bench tests and computational modeling. One problem with bench tests is that variability in prosthesis insertion can significantly influence the failure rate; this makes comparison of prostheses more difficult. To solve this problem an insertion method is required that is both accurate and reproducible. In this work, a general approach to the insertion of hip prostheses into femoral bones is proposed based on physically replicating an insertion path determined using computer animation. As a first step, the seated prosthesis position is determined from templates and femur radiographs. Three-dimensional images of the prosthesis and bone are then imported into computer animation software and an insertion path in the coronal plane is determined. The insertion path is used to determine the profile of a cam. By attaching the prosthesis to a carriage, which is pneumatically moved along this cam, the required insertion motion of the prosthesis in the coronal plane can be achieved. This paper describes the design and validation of the insertion machine. For the validation study, a nonsymmetric hip prosthesis design (Lubinus SPII, Waldemar Link, Germany) is used. It is shown that the insertion machine has sufficient accuracy and reproducibility for preclinical mechanical testing. [S0148-0731(00)00602-6]

1.
Niederer
,
P. G.
,
Chiquet
,
C.
,
Frey
,
O.
, and
Semlitsch
,
M.
,
1978
, “
Artificial Proximal Femur of Fiber Reinforced Polyester for the Study of Load Transmission of Cemented Hip Prostheses: the Prosthesis Cement Interface
,”
Biomaterials
,
1
, pp.
88
89
.
2.
Szivek
,
J. A.
, and
Gealer
,
R. L.
,
1991
, “
Comparison of the Deformation Response of Synthetic and Cadaveric Femora During Simulated One-Legged Stance
,”
J. Appl. Bio.
,
2
, pp.
277
280
.
3.
Andriacchi
,
T. P.
,
Galante
,
J. O.
,
Belytschko
,
T. B.
, and
Hampton
,
S.
,
1976
, “
A Stress Analysis of the Femoral Stem in Total Hip Prostheses
,”
J. Bone Jt. Surg.
,
58-A
, No.
5
, pp.
618
624
.
4.
Star
,
M. J.
,
Colwell
,
C. W.
,
Kelman
,
G. J.
,
Ballock
,
R. T.
, and
Walker
,
R. H.
,
1994
, “
Suboptimal (Thin) Distal Cement Mantle Thickness as a Contributory Factor in Total Hip Arthroplasty Femoral Component Failure
,”
J. Arthrop.
,
9
, No.
2
, pp.
143
149
.
5.
Askew
,
M. J.
,
Steege
,
J. W.
,
Lewis
,
J. L.
,
Ranieri
,
J. R.
, and
Wixson
,
R. L.
,
1984
, “
Effect of Cement Pressure and Bone Strength on Polymethylmethacrylate Fixation
,”
J. Orthop. Res.
,
1
, No.
4
, pp.
412
420
.
6.
Mulroy
,
R. D.
, and
Harris
,
W. H.
,
1990
, “
The Effect of Improved Cementing Techniques on Component Loosening in Total Hip Replacement
,”
J. Bone Jt. Surg.
,
72-B
, pp.
757
760
.
7.
Paul
,
H. A.
,
Bargar
,
W. L.
,
Mittlestadt
,
B.
,
Musits
,
B.
,
Taylor
,
R. H.
,
Kazanzides
,
P.
,
Zuhars
,
J.
,
Williamson
,
B.
, and
Hanson
,
W.
,
1992
, “
Development of a Surgical Robot for Cementless Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
285
, pp.
57
66
.
8.
Bargar
,
W. L.
,
Bauer
,
A.
, and
Borner
,
M.
,
1998
, “
Primary and Revision Total Hip Replacement Using the Robodoc® System
,”
Clin. Orthop. Relat. Res.
,
354
, pp.
82
91
.
9.
Markolf
,
K. L.
, and
Amstutz
,
H. C.
,
1976
, “
In Vitro Measurement of Bone-Acrylic Interface Pressure During Femoral Component Insertion
,”
Clin. Orthop. Relat. Res.
,
121
, pp.
60
66
.
10.
Schmidt
,
J.
,
Steur
,
G.
,
Specht
,
R.
, and
Kumm
,
D.
,
1994
, “
Computer-Controlled Experimental Implantation Technique Comparing the Quality of Different Types of Cement Application Into the Femoral Canal in Cemented Hip Arthroplasty
,”
Biomed. Tec.
,
39
(
4
), pp.
79
84
.
11.
Middleton
,
R. J.
,
Howie
,
D. W.
,
Costi
,
K.
, and
Sharpe
,
P.
,
1998
, “
Effects of Design Changes on Cemented Tapered Femoral Stem Fixation
,”
Clin. Orthop. Relat. Res.
,
355
, pp.
47
56
.
12.
Berzins
,
A.
,
Sumner
,
D. R.
,
Andriacchi
,
T. P.
, and
Galante
,
J. O.
,
1993
, “
Stem Curvature and Load Angle Influence the Initial Relative Bone-Implant Motion of Cementless Femoral Stems
,”
J. Orthop. Res.
,
11
, No.
5
, pp.
758
769
.
13.
Burke
,
D. W.
,
O’Connor
,
D.
,
Zalenski
,
E. B.
,
Jasty
,
M.
, and
Harris
,
W. H.
,
1991
, “
Micromotion of Cemented and Uncemented Femoral Components
,”
J. Bone Jt. Surg.
,
73-B
, pp.
33
37
.
14.
Schneider
,
E.
,
Eulenberger
,
J.
,
Steiner
,
W.
,
Wyder
,
D.
,
Friedman
,
R. J.
, and
Perren
,
S. M.
,
1989
, “
Experimental Method for the In Vitro Testing of the Initial Stability of Cementless Hip Prostheses
,”
J. Biomech.
,
22
, pp.
735
744
.
15.
Kiss
,
J.
,
Murray
,
D. W.
,
Turner-Smith
,
A. R.
, and
Bulstrode
,
C. J.
,
1995
, “
Roentgen Stereophotogrammetric Analysis for Assessing Migration of Total Hip Replacement Femoral Components
,”
J. Eng. Med.
,
209
, pp.
169
175
.
16.
International Standards Organisation, 1988, “Implants for Surgery—Partial and Total Hip Joint Prostheses—Part 3: Determination of Endurance Properties of Stemmed Femoral Components Without Application of Torsion,” ISO 7206—3: (E).
17.
Maher, S. A., Prendergast, P. J., Waide, D. V., Reid, A. J., and Lyons, G. C., 1999, “Development of an Experimental Procedure for Pre-Clinical Testing of Cemented Hip Replacements,” Joint Replacement and Interface Mechanics—II, ASME BED-Vol. 43, pp. 139–140.
You do not currently have access to this content.