Red blood cells undergo continual deformation when traversing microvessels in living tissues. This may contribute to higher resistance to blood flow observed in living microvessels, compared with that in corresponding uniform glass tubes. We use a theoretical model to simulate single-file motion of red cells though capillaries with variable cross-sections, assuming axisymmetric geometry. Effects of cell membrane shear viscosity and elasticity are included, but bending resistance is neglected. Lubrication theory is used to describe the flow of surrounding plasma. When a red cell encounters a region of capillary narrowing, additional energy is dissipated, due to membrane viscosity, and due to narrowing of the lubrication layer, increasing the flow resistance. Predicted resistance to cell motion in a vessel with periodic constrictions (diameter varying between 5 μm and 4 μm) is roughly twice that in a uniform vessel with diameter 4.5 μm. Effects of transient red cell deformations may contribute significantly to blood flow resistance in living microvessels.

1.
Cokelet
G. R.
, and
Sarelius
I. H.
,
1992
, “
Perceived Vessel Lumen and Cell-Blood Velocity Ratio: Impacts on In Vivo Blood Flow Rate Determination
,”
Am. J. Physiol.
, Vol.
262
, pp.
H1156–H1163
H1156–H1163
.
2.
Desjardins
C.
, and
Duling
B. R.
,
1987
, “
Microvessel Hematocrit: Measurement and Implications for Capillary Oxygen Transport
,”
Am. J. Physiol.
, Vol.
252
, pp.
H494–H503
H494–H503
.
3.
Ellis, C. G., Tyml, K., and Strang, B. K., 1989, “Variation in Axial Velocity Profile of Red Cells Passing Through a Single Capillary,” Oxygen Transport to Tissue, X. K. Rakusan, G. P. Biro, T. K. Goldstick and Z. Turek, eds., Plenum, New York, pp. 543–550.
4.
Evans
E. A.
,
1983
, “
Bending Elastic Modulus of Red Blood Cell Membrane Derived From Buckling Instability in Micropipet Aspiration Tests
,”
Biophys. J.
, Vol.
43
, pp.
27
30
.
5.
Evans
E. A.
, and
Hochmuth
R. M.
,
1976
, “
Membrane Viscoelasticity
,”
Biophys. J.
, Vol.
16
, pp.
1
11
.
6.
Evans, E. A., and Skalak, R., 1980, Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton, FL.
7.
Fitz-Gerald
J. M.
,
1969
, “
Mechanics of Red-Cell Motion Though Very Narrow Capillaries
,”
Proc. Roy. Soc.
, London, Series B, Vol.
174
, pp.
193
227
.
8.
Gaehtgens
P.
, and
Schmid-Scho¨nbein
H.
,
1982
, “
Mechanisms of Dynamic Flow Adaptation of Mammalian Erythrocytes
,”
Naturwissenschaften
, Vol.
69
, pp.
294
296
.
9.
Halpern
D.
, and
Secomb
T. W.
,
1991
, “
Viscous Motion of Disc-Shaped Particles Through Parallel-Sided Channels With Near Minimal Widths
,”
J. Fluid Mech.
, Vol.
231
, pp.
545
560
.
10.
Halpern
D.
, and
Secomb
T. W.
,
1992
, “
The Squeezing of Red Blood Cells Through Parallel-Sided Channels With Near-Minimal Widths
,”
J. Fluid Mech.
, Vol.
244
, pp.
307
322
.
11.
Hochmuth
R. M.
, and
Waugh
R. E.
,
1987
, “
Erythrocyte Membrane Elasticity and Viscosity
,”
Ann. Rev. Physiology
, Vol.
49
, pp.
209
219
.
12.
Hsu
R.
, and
Secomb
T. W.
,
1989
, “
Motion of Non-Axisymmetric Red Blood Cells in Cylindrical Capillaries
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
, pp.
147
151
.
13.
Lipowsky
H. H.
,
Kovalcheck
S.
, and
Zweifach
B. W.
,
1978
, “
The Distribution of Blood Rheological Parameters in the Microvasculature of Cat Mesentery
,”
Circ. Res.
, Vol.
43
, pp.
738
749
.
14.
MacDonald
I. C.
,
Aharinejad
S.
,
Schmidt
E. E.
, and
Groom
A. C.
,
1995
, “
Luminal Constrictions Due to Endothelial Cells in Capillaries of Mouse Exocrine Pancreas
,”
Microvasc. Res.
, Vol.
49
, pp.
64
77
.
15.
Pries
A. R.
,
Secomb
T. W.
,
Gaehtgens
P.
, and
Gross
J. F.
,
1990
, “
Blood Flow in Microvascular Networks—Experiments and Simulation
,”
Circ. Res.
, Vol.
67
, pp.
826
834
.
16.
Pries
A. R.
,
Neuhaus
D.
, and
Gaehtgens
P.
,
1992
, “
Blood Viscosity in Tube Flow: Dependence on Diameter and Hematocrit
,”
Amer. J. Physiol.
, Vol.
263
, pp.
H1770–H1778
H1770–H1778
.
17.
Pries
A. R.
,
Secomb
T. W.
,
Gessner
T.
,
Sperandio
M. B.
,
Gross
J. F.
, and
Gaehtgens
P.
,
1994
, “
Resistance to Blood Flow in Microvessels In Vivo
,”
Circ. Res.
, Vol.
75
, pp.
904
915
.
18.
Secomb
T. W.
, and
Skalak
R.
,
1982
, “
Surface Flow of Viscoelastic Membranes in Viscous Fluids
,”
Q. J. Mech. Appl. Math.
35
, pp.
233
247
.
19.
Secomb
T. W.
, and
Gross
J. F.
,
1983
, “
Flow of Red Blood Cells in Narrow Capillaries: Role of Membrane Tension
,”
Int. J. Microcirc. Clin. Exp.
, Vol.
2
, pp.
229
240
.
20.
Secomb
T. W.
,
Skalak
R.
,
O¨zkaya
N.
, and
Gross
J. F.
,
1986
, “
Flow of Axisymmetric Red Blood Cells in Narrow Capillaries
,”
J. Fluid Mech.
, Vol.
163
, pp.
405
423
.
21.
Secomb
T. W.
,
1987
, “
Flow-Dependent Rheological Properties of Blood in Capillaries
,”
Microvasc. Res.
, Vol.
34
, pp.
46
58
.
22.
Secomb
T. W.
,
1991
, “
Red Blood Cell Mechanics and Capillary Blood Rheology
,”
Cell Biophysics
, Vol.
18
, pp.
231
251
.
23.
Skalak, R., and O¨zkaya, N., 1987, “Models of Erythrocyte and Leukocyte Flow in Capillaries,” Physiological Fluid Dynamics II, L. S. Srinath and M. Singh, eds., Tata, McGraw-Hill, New Delhi, pp. 1–10.
24.
Sugihara-Seki
M.
,
Minamiyama
M.
, and
Hanai
S.
,
1989
, “
Vascular Resistance of Arterioles With Nonuniform Diameters
,”
Microvasc. Res.
, Vol.
38
, pp.
148
154
.
This content is only available via PDF.
You do not currently have access to this content.