0
Research Papers

A Micromachined Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystal Composite Circular Array for Intravascular Ultrasound Imaging

[+] Author and Article Information
Sibo Li

North Carolina State University,
911 Oval Dr., RM 3282, EB 3,
Raleigh, NC 27606
e-mail: sli26@ncsu.edu

Jian Tian

CTS Corporation,
479 Quadrangle Drive, Suite E,
Bolingbrook, IL 60440

Xiaoning Jiang

North Carolina State University,
911 Oval Dr., RM 3282, EB 3,
Raleigh, NC 27606
e-mail: xjiang5@ncsu.edu

1Corresponding author.

Manuscript received February 25, 2018; final manuscript received September 9, 2018; published online January 18, 2019. Editor: Ahmed Al-Jumaily.

ASME J of Medical Diagnostics 2(2), 021001 (Jan 18, 2019) (8 pages) Paper No: JESMDT-18-1012; doi: 10.1115/1.4041443 History: Received February 25, 2018; Revised September 09, 2018

This paper describes the design, fabrication, and characterization of a micromachined high-frequency Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystal/epoxy 1–3 composite ultrasound circular array. The 1–3 composites were fabricated by deep reactive ion etching (DRIE) of PMN-PT single crystal. The feature size of single crystal pillars was 18 μm in diameter. The kerf between pillars was less than 4 μm. A 50-element circular array transducer (radially outward) with the pitch of 100 μm was wrapped around a needle resulting in an outer diameter of 1.7 mm. The array test showed that the center frequency reached 39±2 MHz and −6-dB fractional bandwidth was 82±6%. The insertion loss was −41 dB, and crosstalk between adjacent elements was −24 dB. A radial outward imaging testing with phantom wires (D = 50 μm) was conducted. The image was in a dynamic range of 30 dB to show a penetration depth of 6 mm by using the synthetic aperture method. The −6-dB beam width was estimated to be 60 μm in the axial direction at 3.1 mm distance away from the probe. The results suggest that the 40 MHz micromachined 1–3 composite circular array is promising for intravascular ultrasound (IVUS) imaging applications.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Naghavi, M. , Libby, P. , Falk, E. , Casscells, S. W. , Litovsky, S. , Rumberger, J. , Badimon, J. J. , Stefanadis, C. , Moreno, P. , Pasterkamp, G. , Fayad, Z. , Stone, P. H. , Waxman, S. , Raggi, P. , Madjid, M. , Zarrabi, A. , Burke, A. , Yuan, C. , Fitzgerald, P. J. , Siscovick, D. S. , de Korte, C. L. , Aikawa, M. , Juhani Airaksinen, K. E. , Assmann, G. , Becker, C. R. , Chesebro, J. H. , Farb, A. , Galis, Z. S. , Jackson, C. , Jang, I. K. , Koenig, W. , Lodder, R. A. , March, K. , Demirovic, J. , Navab, M. , Priori, S. G. , Rekhter, M. D. , Bahr, R. , Grundy, S. M. , Mehran, R. , Colombo, A. , Boerwinkle, E. , Ballantyne, C. , Insull, W., Jr. , Schwartz, R. S. , Vogel, R. , Serruys, P. W. , Hansson, G. K. , Faxon, D. P. , Kaul, S. , Drexler, H. , Greenland, P. , Muller, J. E. , Virmani, R. , Ridker, P. M. , Zipes, D. P. , Shah, P. K. , and Willerson, J. T. , 2003, “ From Vulnerable Plaque to Vulnerable Patient a Call for New Definitions and Risk Assessment Strategies—Part I,” Circulation, 108(14), pp. 1664–1672. [CrossRef] [PubMed]
Mozaffarian, D. , Benjamin, E. J. , Go, A. S. , Arnett, D. K. , Blaha, M. J. , Cushman, M. , Das, S. R. , de Ferranti, S. , Després, J.-P. , Fullerton, H. J. , Howard, V. J. , Huffman, M. D. , Isasi, C. R. , Jiménez, M. C. , Judd, S. E. , Kissela, B. M. , Lichtman, J. H. , Lisabeth, L. D. , Liu, S. , Mackey, R. H. , Magid, D. J. , McGuire, D. K. , Mohler, E. R. , Moy, C. S. , Muntner, P. , Mussolino, M. E. , Nasir, K. , Neumar, R. W. , Nichol, G. , Palaniappan, L. , Pandey, D. K. , Reeves, M. J. , Rodriguez, C. J. , Rosamond, W. , Sorlie, P. D. , Stein, J. , Towfighi, A. , Turan, T. N. , Virani, S. S. , Woo, D. , Yeh, R. W. , and Turner, M. B. , 2016, “ Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association,” Circulation, 133(4), pp. 447–454. [CrossRef] [PubMed]
Rathod, K. S. , Hamshere, S. M. , Jones, D. A. , and Mathur, A. , 2015, “ Intravascular Ultrasound Versus Optical Coherence Tomography for Coronary Artery Imaging—Apples and Oranges,” Interventional Cardiol. Rev., 10(1), pp. 8–15. [CrossRef]
Constantinides, P. , 1990, “ Cause of Thrombosis in Human Atherosclerotic Arteries,” Am. J. Cardiol., 66(16), pp. G37–G40. [CrossRef]
Lockwood, G. , Turnball, D. , Christopher, D. , and Foster, F. , 1996, “ Beyond 30 MHz [Applications of High-Frequency Ultrasound Imaging],” Eng. Med. Biol. Mag., IEEE, 15(6), pp. 60–71. [CrossRef]
Bezanson, A. , Adamson, R. , and Brown, J. A. , 2014, “ Fabrication and Performance of a Miniaturized 64-Element High-Frequency Endoscopic Phased Array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61(1), pp. 33–43. [CrossRef] [PubMed]
Nishimura, R. A. , Edwards, W. D. , Warnes, C. A. , Reeder, G. S. , Holmes, D. R. , Tajik, A. J. , and Yock, P. G. , 1990, “ Intravascular Ultrasound Imaging: In Vitro Validation and Pathologic Correlation,” J. Am. Coll. Cardiol., 16(1), pp. 145–154. [CrossRef] [PubMed]
Jiang, X. , Snook, K. , Hackengerber, W. , Yuan, J. , Cheng, A. , Schafer, M. , and Geng, X. , 2007, “ 4F-5 PC-MUT Arrays for Ophthalmologic Ultrasound,” Ultrasonics Symposium (IUS), New York, Oct. 28–31, pp. 309–312. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4409572
Turnbull, D. H. , Starkoski, B. G. , Harasiewicz, K. A. , Semple, J. L. , From, L. , Gupta, A. K. , Sauder, D. N. , and Foster, F. S. , 1995, “ A 40–100 MHz B-Scan Ultrasound Backscatter Microscope for Skin Imaging,” Ultrasound Med. Biol., 21(1), pp. 79–88. [CrossRef] [PubMed]
Foster, F. , Zhang, M. , Zhou, Y. , Liu, G. , Mehi, J. , Cherin, E. , Harasiewicz, K. A. , Starkoski, B. G. , Zan, L. , Knapik, D. A. , and Adamson, S. L. , 2002, “ A New Ultrasound Instrument for In Vivo Microimaging of Mice,” Ultrasound Med. Biol., 28(9), pp. 1165–1172. [CrossRef] [PubMed]
Mintz, G. S. , Nissen, S. E. , Anderson, W. D. , Bailey, S. R. , Erbel, R. , Fitzgerald, P. J. , Pinto, F. J. , Rosenfield, K. , Siegel, R. J. , Tuzcu, E. M. , and Yock, P. G. , 2001, “ American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS) 33: A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents Developed in Collaboration With the European Society of Cardiology Endorsed by the Society of Cardiac Angiography and Interventions,” J. Am. Coll. Cardiol., 37(5), pp. 1478–1492. [CrossRef] [PubMed]
Donnell, M. O. , Eberle, M. , Stephens, D. , Litzza, J. , Vicente, K. S. , and Shapo, B. , 1997, “ Synthetic Phased Arrays for Intraluminal Imaging of Coronary Arteries,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44(3), pp. 714–721. [CrossRef]
Geng, X. , and Zhang, Q. M. , 1999, “ Resonance Modes and Losses in 1-3 Piezocomposites for Ultrasonic Transducer Applications,” J. Appl. Phys., 85(3), pp. 1342–1350. [CrossRef]
Li, S. , Jiang, X. , Tian, J. , and Han, P. , 2013, “ Development of Dual-Layer Micromachined Composite Transducers for Broadband Ultrasound Imaging,” Ultrasonics Symposium (IUS), Prague, Czech Republic, July 21–25, pp. 667–670. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6725284&isnumber=6724747
Cannata, J. M. , Ritter, T. , Chen, W.-H. , Silverman, R. H. , and Shung, K. K. , 2003, “ Design of Efficient, Broadband Single-Element (20-80 MHz) Ultrasonic Transducers for Medical Imaging Applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50, pp. 1548–1557. [CrossRef] [PubMed]
Zhang, S. , Li, F. , Jiang, X. , Kim, J. , Luo, J. , and Geng, X. , 2015, “ Advantages and Challenges of Relaxor-PbTiO 3 Ferroelectric Crystals for Electroacoustic Transducers—A Review,” Prog. Mater. Sci., 68, pp. 1–66. [CrossRef] [PubMed]
Smith, W. A. , 1989, “ The Role of Piezocomposites in Ultrasonic Transducers,” Ultrasonics Symposium (IUS), Montreal, QC, Canada, Oct. 3–6, pp. 755–766.
Zhang, Y. , Zhao, X. , Wang, W. , Ren, B. , Liu, D. A. , and Luo, H. , 2011, “ Fabrication of PIMNT/Epoxy 1-3 Composites and Ultrasonic Transducer for Nondestructive Evaluation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, pp. 1774–1781. [CrossRef] [PubMed]
Reynolds, P. , Hyslop, J. , and Hayward, G. , 2003, “ Analysis of Spurious Resonances in Single and Multi-Element Piezocomposite Ultrasonic Transducers,” Ultrasonics Symposium (IUS), Honolulu, HI, Oct. 5–8, pp. 1650–1653.
Cheng, K. C. , Chan, H. L. , Choy, C. L. , Yin, Q. , Luo, H. , and Yin, Z. , 2003, “ Single Crystal PMN-0.33 PT/Epoxy 1-3 Composites for Ultrasonic Transducer Applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50(9), pp. 1177–1183. [CrossRef] [PubMed]
Gururaja, T. , Schulze, W. A. , Cross, L. E. , Newnham, R. E. , Auld, B. A. , and Wang, Y. J. , 1985, “ Piezoelectric Composite Materials for Ultrasonic Transducer Applications—Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites,” IEEE Trans. Sonics Ultrason., 32(4), pp. 481–498. [CrossRef]
Liu, R. , Harasiewicz, K. A. , and Foster, F. S. , 2001, “ Interdigital Pair Bonding for High Frequency (20-50 MHz) Ultrasonic Composite Transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 48, pp. 299–306. [CrossRef] [PubMed]
Ritter, T. , Shrout, T. R. , Tutwiler, R. , and Shung, K. K. , 2002, “ A 30-MHz Piezo-Composite Ultrasound Array for Medical Imaging Applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 49(2), pp. 217–230. [CrossRef] [PubMed]
Safari, A. , Janas, V. , and Panda, R. K. , 1996, “ Fabrication of Fine-Scale 1-3 Pb (Zrx, Ti1-x) O3/Ceramic/Polymer Composites Using a Modified Lost Mold Method,” Symposium on Smart Structures and Materials, pp. 251–262.
Jiang, X. , Snook, K. , Cheng, A. , Hackenberger, W. , and Geng, X. , 2008, “ Micromachined PMN-PT Single Crystal Composite Transducers–15–75 MHz PC-MUT,” Ultrasonics Symposium (IUS), Beijing, China, Nov. 2–5, pp. 164–167.
Liu, C. , Djuth, F. , Li, X. , Chen, R. , Zhou, Q. , and Shung, K. K. , 2012, “ Micromachined High Frequency PMN-PT/Epoxy 1–3 Composite Ultrasonic Annular Array,” Ultrasonics, 52(4), pp. 497–502. [CrossRef] [PubMed]
Li, X. , Ma, T. , Tian, J. , Han, P. , Zhou, Q. , and Shung, K. K. , 2014, “ Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61(7), pp. 1171–1178. [CrossRef] [PubMed]
Liu, C. , Djuth, F. T. , Zhou, Q. , and Shung, K. K. , 2013, “ Micromachining Techniques in Developing High-Frequency Piezoelectric Composite Ultrasonic Array Transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60, pp. 2615–2625. [CrossRef] [PubMed]
Cummins, T. , Eliahoo, P. , and Shung, K. K. , 2016, “ High-Frequency Ultrasound Array Designed for Ultrasound-Guided Breast Biopsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63(6), pp. 817–827. [CrossRef] [PubMed]
Zhang, R. , Jiang, B. , and Cao, W. , 2001, “ Elastic, Piezoelectric, and Dielectric Properties of Multidomain 0.67 Pb (Mg 1/3 Nb 2/3) O 3–0.33 PbTiO 3 Single Crystals,” J. Appl. Phys., 90, pp. 3471–3475. [CrossRef]
Selfridge, A. , Kino, G. , and Khuri-Yakub, B. , 1980, “ A Theory for the Radiation Pattern of a Narrow-Strip Acoustic Transducer,” Appl. Phys. Lett., 37(1), pp. 35–36. [CrossRef]
Jiang, X. , Snook, K. , Walker, T. , Portune, A. , Haber, R. , Geng, X. , Welter, J. , and Hackenberger, W. S. , 2008, “ Single Crystal Piezoelectric Composite Transducers for Ultrasound NDE Applications,” 15th International Symposium on: Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring, p. 69340D.
Jiang, X. , Snook, K. , Hackenberger, W. S. , and Geng, X. , 2007, “ Single Crystal Piezoelectric Composites for Advanced NDT Ultrasound,” 14th International Symposium on: Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring, p. 65310F.
Jiang, X. , Yuan, J. R. , Cheng, A. , Snook, K. , Cao, P. J. , Rehrig, P. W. , and Hackenberger, W. S. ,, 2006, “ 5I-1 Microfabrication of Piezoelectric Composite Ultrasound Transducers (PC-MUT),” Ultrasonics Symposium (IUS), Vancouver, BC, Canada, Oct. 2–6, pp. 922–925
Yuan, J. R. , Jiang, X. , Cao, P.-J. , Sadaka, A. , Bautista, R. , Snook, K. , and Rehrig, P. W. , 2006, “ 5C-5 High Frequency Piezo Composites Microfabricated Ultrasound Transducers for Intravascular Imaging,” Ultrasonics Symposium, pp. 264–268.
Meitzler, A. , Tiersten, H. , Warner, A. , Berlincourt, D. , Couqin, G. , and Welsh , F., III , 1988, “ IEEE Standard on Piezoelectricity,” IEEE, New York.
Li, S. , Jiang, X. , Tian, J. , Han, P. , and Zhang, C. , 2015, “ A PMN-PT Micromachined 1–3 Composite Circular Array for IVUS,” IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, Oct. 21–24, pp. 1–4.
Krimholtz, R. , Leedom, D. A. , and Matthaei, G. L. , 1970, “ New Equivalent Circuits for Elementary Piezoelectric Transducers,” Electron. Lett., 6(13), pp. 398–399. [CrossRef]
Lockwood, G. R. , Turnbull, D. H. , and Foster, F. S. , 1994, “ Fabrication of High Frequency Spherically Shaped Ceramic Transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 41(2), pp. 231–235. [CrossRef]
O'Donnell, M. , and Thomas, L. , 1992, “ Efficient Synthetic Aperture Imaging From a Circular Aperture With Possible Application to Catheter-Based Imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39(3), pp. 366–380. [CrossRef] [PubMed]
Tian, J. , Meneou, K. , Stone, B. , and Han, P. , 2010, “ Piezoelectric Crystal Composite for High Frequency Ultrasound Application,” Ultrasonics Symposium (IUS), San Diego, CA, Oct. 11–14, pp. 65–67.
Smith, W. A. , and Auld, B. A. , 1991, “ Modeling 1-3 Composite Piezoelectrics: Thickness-Mode Oscillations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38(1), pp. 40–47. [CrossRef] [PubMed]
Cannata, J. M. , Williams, J. A. , Zhou, Q. , Ritter, T. A. , and Shung, K. K. , 2006, “ Development of a 35-MHz Piezo-Composite Ultrasound Array for Medical Imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, pp. 224–236. [CrossRef] [PubMed]
Ma, J. , Martin, K. H. , Dayton, P. A. , and Jiang, X. , 2014, “ A Preliminary Engineering Design of Intravascular Dual-Frequency Transducers for Contrast-Enhanced Acoustic Angiography and Molecular Imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61(5), pp. 870–880. [CrossRef] [PubMed]
Wang, Z. , Martin, K. H. , Huang, W. , Dayton, P. A. , and Jiang, X. , 2016, “ Contrast Enhanced Superharmonic Imaging for Acoustic Angiography Using Reduced Form-Factor Lateral Mode Transmitters for Intravascular and Intracavity Applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64(2), pp. 311–319.

Figures

Grahic Jump Location
Fig. 1

A three-dimensional model of 1–3 composite in comsol simulation

Grahic Jump Location
Fig. 2

The schematic of process for micromachined 1–3 composites

Grahic Jump Location
Fig. 3

The schematic view of circular array structure

Grahic Jump Location
Fig. 4

The relative positions in the wire imaging test setup

Grahic Jump Location
Fig. 5

PMN-PT 1–3 composite with conductive backing (a) top view and (b) side view

Grahic Jump Location
Fig. 6

Impedance and phase of the PMN-PT 1–3 composite: (a) simulation results using comsol and (b) test results

Grahic Jump Location
Fig. 7

A photograph of the circular array and the aperture of the element array under the microscope (the zoom-in figure)

Grahic Jump Location
Fig. 8

The test result of the circular array: (a) dielectric capacitance and loss values for each element in array and (b) center frequency and bandwidth values for each element in array

Grahic Jump Location
Fig. 9

Measured pulse-echo response and its fast Fourier transform spectra for a representative element in the array

Grahic Jump Location
Fig. 10

Measured insertion loss

Grahic Jump Location
Fig. 11

Measured cross-talk of the array

Grahic Jump Location
Fig. 12

An image of steel wires reconstructed by synthetic aperture method, with the dynamic range of 30 dB

Grahic Jump Location
Fig. 13

The beam profile of single line at 3 mm in axial direction (a) and circumferential direction (b)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In