Structurally integrated sensors which are capable of continuous structural health monitoring represent an attractive option in view of their potential for providing real-time assessment/warning of structural damage. In recent years, optical fiber systems have attracted a considerable amount of attention and have been shown to be a very attractive option for health monitoring in advanced composite materials. These sensors have either been embedded or surface-bonded to the host material thereby allowing continuous assessment of the health of the structure. Structural health assessment takes the form of damage detection and/or monitoring of specific health indicators. In the former approach, the optical fiber systems are generally optimized to increase their sensitivity to the presence of damage in the composite structure, while the latter approach relies on the examination of characteristic changes in the monitored parameter to infer a loss in structural integrity. To this end, many investigators have demonstrated the potential of optical fiber sensors, most particularly intensity-based optical fiber systems and fiber Bragg grating sensors for structural health monitoring of advanced composite materials. The initial part of this paper provides an up-to-date review of the applications of optical fiber sensors in composite materials, focussing particularly on the use of intensity-based optical fiber systems and fiber Bragg grating sensors for damage detection. These optical fiber systems have been shown to be capable of detecting impact damage, transverse cracking, and delamination, and have the ability to monitor strain in structures. The introduction of optical fiber sensors into a composite material can inadvertently produce a geometrical discontinuity in the vicinity of the sensor. Numerous experimental investigations have also been performed to assess the possible reduction in the properties of the host structure. A review of the findings of these investigations reported in the literature is also given. This review article cites 161 references.

1.
Spillman
Jr
WM
, and
Claus
RO
(
1999
),
Sensory phenomena and measurement instrumentation for smart structures and materials: Conference overview
,
SPIE
3330
,
2
5
.
2.
Udd
E
(
1999
),
Early efforts to initiate the field of fiber optic smart structures at McDonnel Douglas
,
SPIE
3330
,
12
18
.
3.
Friebele
EJ
,
Askins
CG
,
Bosse
AB
,
Kersey
AD
,
Patrick
HJ
,
Pogue
WR
,
Putnam
MA
,
Simon
WR
,
Tasker
FA
,
Vincent
WS
, and
Vohra
ST
(
1999
),
Optical fiber sensors for spacecraft applications
,
Smart Mater. Struct.
8
,
813
838
.
4.
Bronnimann
R
,
Nellen
PM
, and
Sennhauser
U
(
1998
),
Application and reliability of fiber optical surveilance system for a stay cable bridge
,
Smart Mater. Struct.
7
,
229
236
.
5.
Kageyama
K
,
Kimpara
I
,
Suzuki
T
,
Ohsawa
I
,
Murayama
H
, and
Ito
K
(
1998
),
Smart material structure marine structures: an approach to the monitoring of ship structures with fiber-optics sensors
,
Smart Mater. Struct.
7
,
472
478
.
6.
Crawley
E
and
de Luis
J
(
1987
),
Use of piezoceramic actuators as elements of intelligent structures
,
AIAA J.
25
,
1373
1385
.
7.
Nitzsche
F
and
Breitbach
E
(
1994
),
Individual blade control of hinged blades using smart structures
,
Smart Mater. Struct.
3
,
171
180
.
8.
Dry
CM
(
1994
),
Matrix cracking repair and fillings using active and passive modes for smart timed release of chemicals from fibers into matrices
,
Smart Mater. Struct.
3
,
118
123
.
9.
Dry
CM
(
1994
),
Smart material structure multiphase composite materials which repair themselves by a release of liquids which become solids
,
SPIE
2189
,
62
70
.
10.
Hale
KF
(
1992
),
An optical-fiber fatigue crack-detection and monitoring system
,
Smart Mater. Struct.
1
,
156
161
.
11.
Fuhr
PL
,
Huston
DR
,
Kajenski
PJ
, and
Ambrose
TP
(
1992
),
Performance and health-monitoring of the Stanford Medical Building using embedded sensors
,
Smart Mater. Struct.
1
,
63
68
.
12.
Badcock
RA
and
Birt
EA
(
2000
),
The use of 0–3 piezocomposite embedded Lamb wave sensors for detection of damage in advanced fiber composites
,
Smart Mater. Struct.
9
,
291
297
.
13.
Murukeshan
VM
,
Chan
PY
,
Ong
LS
, and
Asundi
A
(
1999
),
On-line health-monitoring of smart composite structures using fiber polarimetric sensor
,
Smart Mater. Struct.
8
,
544
548
.
14.
Gandhi
MV
,
Thompson
BS
,
Kasiviswanathan
SR
, and
Choi
SB
(
1992
),
A Collage of experimental investigations on smart fibrous composite structures and mechanical systems featuring electro-rheological fluids, piezoelectric materials and fiber-optic sensors
,
Composites Engineering
2
,
561
571
.
15.
Hofer
B
(
1987
),
Fiber optic damage detection in composite structures
,
Composites
18
,
309
316
.
16.
Friebele
EJ
,
Askins
CG
,
Bosse
AB
,
Kersey
AD
,
Patrick
HJ
,
Pogue
WR
,
Putnam
MA
,
Simon
WR
,
Tasker
FA
,
Vincent
WS
, and
Vohra
ST
(
1999
),
Optical fiber sensors for spacecraft applications
,
Smart Mater. Struct.
8
,
813
838
.
17.
Crane
RM
,
Macander
AB
, and
Gagorik
J
(
1983
),
Fiber optics for a damage assessment system for fiber reinforced plastic composite structures
,
Rev. Prog. Quant. Nondestr. Eval.
2B
,
1419
1430
.
18.
Lee
CE
,
Alcoz
JJ
,
Yeh
Y
,
Gibler
WN
,
Atkins
RA
, and
Taylor
HF
(
1992
),
Optical fiber Fabry-Perot sensors for smart structures
,
Smart Mater. Struct.
1
,
123
127
.
19.
Liu
T
,
Wu
M
,
Rao
Y
,
Jackson
DA
, and
Fernando
GF
(
1998
),
A multiplexed optical fiber-based extrinsic Fabry-Perot sensor system for in-situ strain monitoring in composites
,
Smart Mater. Struct.
7
,
550
556
.
20.
LeBlanc
M
and
Measure
RM
(
1992
),
Impact damage assessment in composite materials with embedded fiber-optic sensors
,
Composites Engineering
2
,
573
596
.
21.
Badcock
RA
, and
Fernando
GF
(
1995
),
An intensity-based optical fiber sensor for fatigue damage detection in advanced fiber-reinforced composites
,
Smart Mater. Struct.
4
,
223
230
.
22.
Lee
DC
,
Lee
JJ
,
Kwon
IB
, and
Seo
DC
(
2001
),
Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors
,
Smart Mater. Struct.
10
,
285
292
.
23.
Cantwell
WJ
,
Curtis
PT
, and
Morton
J
(
1984
),
Impact and subsequent fatigue damage growth in carbon fiber laminates
,
Int. J. Fatigue
6
,
113
118
.
24.
Grattan KTV and Meggitt BT (eds), (1998), Devices and Technology, Optical fiber sensor technology 2, Chapman and Hall.
25.
Kersey
AD
(
1996
),
A review of recent developments in fiber optic sensor technology
,
Opt. Fiber Technol.: Mater., Devices Syst.
2
,
291
317
.
26.
Measures
RM
,
Glossop
NDW
,
Lymer
J
,
LeBlanc
M
,
Dubois
S
,
Tsaw
W
, and
Tennyson
RC
(
1989
),
Structurally integrated fiber optic damage assessment system for composite materials
,
Appl. Opt.
28
,
2626
2633
.
27.
Martin
AR
,
Fernando
GF
, and
Hale
KF
(
1997
),
Impact damage detection in filament wound tubes using embedded optical fiber sensors
,
Smart Mater. Struct.
6
,
470
476
.
28.
Chang
CC
and
Sirkis
JS
(
1998
),
Design of fiber optic sensor systems for low velocity impact detection
,
Smart Mater. Struct.
7
,
166
177
.
29.
Elvin
N
, and
Leung
C
(
1997
),
Feasibility study of delamination detection with embedded optical fibers
,
J. Intell. Mater. Syst. Struct.
8
,
824
828
.
30.
Rowe
WJ
,
Rausch
EO
, and
Dean
PD
(
1986
),
Embedded optical fiber strain sensor for composite structure applications
,
SPIE
718
,
266
273
.
31.
Everall
L
,
Gallon
A
, and
Roberts
D
(2000), Optical fiber strain sensing for practical structural load monitoring, Sensor Review 20, 113–119.
32.
McKenzie
I
,
Jones
R
,
Marshall
IH
, and
Galea
S
(
2000
),
Optical fiber sensors for health-monitoring of bonded repair systems
,
Compos. Struct.
50
,
405
416
.
33.
Chiu
WK
,
Koh
YL
,
Galea
SC
, and
Rajic
N
(
2000
),
Smart structure application in bonded repairs
,
Compos. Struct.
50
,
433
444
.
34.
Findik
F
,
Mrad
N
, and
Johnston
A
(
2000
),
Strain monitoring in composite patched structures
,
Compos. Struct.
49
,
331
338
.
35.
Okabe
Y
,
Yashiro
S
,
Kosaka
T
, and
Takeda
N
(
2000
),
Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors
,
Smart Mater. Struct.
9
,
832
838
.
36.
Takeda
N
,
Kosaka
T
, and
Ichiyama
T
(
1999
),
Detection of transverse cracks by embedded plastic optical fiber in FRP laminates
,
SPIE
3670
,
248
255
.
37.
Badcock
RA
, and
Fernando
GF
(
1995
),
An intensity-based optical fiber sensor for fatigue damage detection in advanced fiber-reinforced composites
,
Smart Mater. Struct.
4
,
223
230
.
38.
Lee
DC
,
Lee
JJ
,
Kwon
IB
, and
Seo
DC
(
2001
),
Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors
,
Smart Mater. Struct.
10
,
285
292
.
39.
Hale
KF
,
Hockenhull
BS
, and
Christodoulou
G
(1980), The application of optical fibers as witness devices for the detection of plastic strain and cracking, Strain 16, 150–154.
40.
Lagakos
N
,
Cole
JH
, and
Bucaro
JA
(
1987
),
Microbend fiber-optic sensor
,
Appl. Opt.
26
,
2171
2180
.
41.
Butter
CD
and
Hocker
GB
(
1978
),
Fiber optics strain gauge
,
Appl. Opt.
17
,
2867
2869
.
42.
Lees J (1976), STL Ltd Harlow, UK, unpublished report.
43.
Crane
RM
,
Macander
AB
, and
Gagoric
J
(
1982
),
Fiber optics for a damage assessment system for fiber reinforced plastic composite structures
,
Rev. Prog. Quant. Nondestr. Eval.
2B
,
1419
1430
.
44.
Jen
CK
,
Farnell
GW
,
Parker
M
, and
Cielo
P
(
1985
),
A fiber optic damage monitor
,
Rev. Prog. Quant. Nondestr. Eval.
48
,
831
838
.
45.
Measures
RM
(
1990
),
Damage assessment for composite smart structures
,
Rev. Prog. Quant. Nondestr. Eval.
9
,
1185
1198
.
46.
LeBlanc
M
,
Dubois
S
,
McEwen
K
,
Hogg
D
,
Park
B
,
Tsaw
W
, and
Measures
RM
(
1989
),
Development of a fiber optic damage system for an aircraft leading edge
,
SPIE
1170
,
196
204
.
47.
Glossop NDW (1989), An embedded fiber optic sensor for impact damage detection in composite materials, PhD Thesis, Univ of Toronto, Toronto, Canada.
48.
Tsaw
W
,
LeBlanc
M
, and
Measure
RM
(
1990
),
Growth of damage within composites determined by image enhanced backlighting and embedded optical fibers
,
Rev. Prog. Quant. Nondestr. Eval.
9
,
1207
1212
.
49.
Liang
D
, and
Culshaw
B
(
1993
),
Fiber optic silicon impact sensor for application to smart skins
,
Electron. Lett.
29
,
529
530
.
50.
Santos
JI
,
Varo
AJ
,
Souto
AG
,
Lamela
H
,
del Olmo
E
, and
Jimenez
A
(
1999
),
Dynamic response in carbon fiber composite material
,
SPIE
3670
,
268
276
.
51.
Whelan
M
(
1999
),
Damage Detection in vibrating composite panels using embedded fiber optic sensors and pulsed-DPSI
,
Key Eng. Mater.
167–168
,
122
131
.
52.
Doyle
C
,
Martin
A
,
Liu
T
,
Wu
M
,
Hayes
S
,
Crosby
PA
,
Powell
GR
,
Brooks
D
, and
Fernando
GF
(
1998
),
In-situ process and condition monitoring of advanced fiber-reinforced composite materials using optical fiber sensors
,
Smart Mater. Struct.
7
,
145
158
.
53.
Doyle
C
and
Fernando
G
(
1998
),
Detecting impact damage in a composite material with an optical fiber vibration sensor system
,
Smart Mater. Struct.
7
,
543
549
.
54.
Tay
AK
,
Wilson
DA
,
Demirdogen
AC
,
Houghton
JR
, and
Wood
RL
(
1990
),
Microdamage and optical signal analysis of impact induced fracture in smart structures
,
SPIE
1370
,
328
343
.
55.
Martin
A
,
Badcock
R
,
Nightingale
C
, and
Fernando
GF
(
1997
),
A novel optical fiber-based strain sensor
,
IEEE Photonics Technol. Lett.
9
,
982
984
.
56.
Inder
DC
,
Buckley
MA
,
Liu
T
, and
Fernando
GF
(
1999
),
Evaluation of a low-cost optical fiber-based strain sesor
,
SPIE
3670
,
207
213
.
57.
Waite
SG
(
1990
),
Use of embedded optical fiber for early fatigue damage detection in composite materials
,
Composites
21
,
148
154
.
58.
Waite
SG
(
1990
),
Use of embedded optical fiber for significant fatigue damage detection in composite materials
,
Composites
21
,
225
231
.
59.
Hale
KF
(
1992
),
An optical-fiber fatigue crack-detection and monitoring system
,
Smart Mater. Struct.
1
,
156
161
.
60.
Kwon
YW
(
1993
),
Calculation of effective moduli of fibrous composites with micro-mechanical damage
,
Compos. Struct.
25
,
187
192
.
61.
O’Brien
TK
, and
Reifsnider
KL
(
1981
),
Fatigue damage evaluation through stiffness measurements in boron-epoxy laminates
,
J. Compos. Mater.
15
,
55
70
.
62.
Spearing
SM
,
Beaumont
PWR
, and
Smith
PA
(1992), Fatigue damage mechanics of composite materials - Part IV: Prediction of post-fatigue stiffness, Composite Science and Engineering 44, 309–317.
63.
Lee
DC
,
Lee
JJ
,
Kwon
IB
, and
Seo
DC
(
2001
),
Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors
,
Smart Mater. Struct.
20
,
285
292
.
64.
Laws
N
and
Dvorak
GJ
(
1988
),
Progressive transverse cracking in composite laminates
,
J. Compos. Mater.
22
,
900
916
.
65.
Lim
SG
, and
Hong
CS
(
1989
),
Effects of transverse cracks on the thermo-mechanical properties of cross-ply laminated composites
,
Compos. Sci. Technol.
34
,
145
62
.
66.
Takeda
N
and
Ogihara
S
(
1994
),
Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates
,
Compos. Sci. Technol.
52
,
309
318
.
67.
Okabe
Y
,
Yashiro
S
,
Kosaka
T
, and
Takeda
N
(
2000
),
Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors
,
Smart Mater. Struct.
9
,
832
838
.
68.
Okabe
Y
,
Okabe
Mı´zutani
,
Yashiro
S
, and
Takeda
N
(
2001
),
Application of small-diameter FBG sensors for detection of damages in composites
,
SPIE
4328
,
295
305
.
69.
Kitade
S
,
Fukuda
T
, and
Osaka
K
(
1995
),
Fiber optic method for detection of impact induced damage in composite laminates
,
Journal of the Society of Materials Science
44
,
1196
1200
.
70.
Kitade S, Fukuda T, Osaka K, and Hamamoto A (1997), Detection of damages in composite laminates with embedded optical fibers, Proc of US-Japan Workshop on Smart Materials and Structures, Inoue K, Shen SIY, and Taya M (eds), The Minerals, Metals and Materials Society, 283–290.
71.
Takeda
N
,
Kosaka
T
, and
Ichiyama
T
(
1999
),
Detection of transverse cracks by embedded plastic optical fiber in FRP laminates
,
SPIE
3670
,
248
255
.
72.
Hayes
S
,
Brooks
D
,
Liu
T
,
Vickers
S
, and
Fernando
GF
(
1996
),
In-situ self-sensing fiber reinforcing composites
,
SPIE
2718
,
376
384
.
73.
Brooks
D
,
Hayes
S
,
Khan
N
,
Zolfaghar
K
, and
Fernando
GF
(
1997
),
Self-sensing E-glass fiber reinforced composites
,
SPIE
3042
,
111
119
.
74.
Hayes
S
,
Liu
T
,
Brooks
D
,
Monteith
S
,
Ralph
B
,
Vickers
S
, and
Fernando
GF
(
1997
),
In situ self-sensing fiber reinforced composites
,
Smart Mater. Struct.
6
,
432
440
.
75.
Zolfaghar
K
,
Khan
N
,
Brooks
D
,
Hayes
S
,
Liu
T
,
Roca
J
,
Lander
J
, and
Fernando
GF
(
1998
),
Quartz and E-glass fiber self-sensing composites
,
SPIE
3321
,
314
328
.
76.
Lagakos
N
,
Cole
JH
, and
Bucaro
JA
(
1987
),
Microbend fiber-optic sensor
,
Appl. Opt.
26
,
2171
2180
.
77.
Yao
SK
, and
Asawa
CK
(
1983
),
Microbending fiber optic sensing
,
SPIE
412
,
9
13
.
78.
Udd
E
,
Theriault
JP
,
Markus
A
, and
Bar-Cohen
Y
(
1990
),
Microbending fiber optic sensors for smart structures
,
SPIE
1170
,
478
482
.
79.
Demirdogen
AC
,
Houghton
JR
,
Tay
AK
,
Wilson
DA
, and
Wood
RL
(
1991
),
Evaluation of optical fiber bending transducer development for smart structure applications
,
Rev. Prog. Quant. Nondestr. Eval.
10B
,
1259
1266
.
80.
Hill
KO
,
Fuji
Y
,
Johnson
DC
, and
Kawasaki
BS
(
1978
),
Photosensitivity in optical fiber waveguides, application to reflection filter fabrication
,
Appl. Phys. Lett.
32
,
647
649
.
81.
Meltz
G
,
Morey
GG
, and
Glenn
WH
(
1989
),
Formation of Bragg grating in optical fibers by a transverse holographic method
,
Opt. Lett.
14
,
823
825
.
82.
Morey
WW
,
Meltz
G
, and
Glenn
WH
(
1989
),
Fiber optic Bragg grating sensors
,
SPIE
1169
,
98
107
.
83.
Melle
S
,
Liu
K
, and
Measures
RM
(
1991
),
Strain sensing using a fiber optic Bragg grating
,
SPIE
1588
,
255
263
.
84.
Dunphy
JR
,
Meltz
G
,
Lamm
FP
, and
Morey
WW
(
1991
),
Multi-function, distributed optical-fiber sensor for composite cure and response monitoring
,
SPIE
1370
,
116
118
.
85.
Simonsen
HD
,
Paetsch
R
, and
Dunphy
JR
(
1992
),
Fiber Bragg grating sensor demonstration in glass-fiber reinforced polyester composite
,
SPIE
1777
,
73
76
.
86.
Huang
S
,
LeBlanc
M
,
Ohn
MM
, and
Measure
RM
(
1995
),
Bragg intragrating structural sensing
,
Appl. Opt.
34
,
5003
5009
.
87.
Foote PD (1994), Fiber Bragg grating strain sensors for aerospace smart structures, Proc to 2nd European Conf on Smart Structures and Materials, Glasglow, UK, 290–293.
88.
Bugaud
M
,
Ferdinand
P
,
Rougeault
S
,
Dewynter-Marty
V
,
Parniex
P
, and
Lucas
D
(
2000
),
Health-monitoring of composite plastic waterworks lock gates using in-fiber Bragg grating sensors
,
Smart Mater. Struct.
9
,
322
327
.
89.
Maaskant
R
,
Alavie
T
,
Measures
RM
,
Ohn
M
,
Karr
S
,
Glennie
D
,
Wade
C
,
Tadros
G
, and
Rizkalla
S
(
1994
),
Fiber optic Bragg grating sensor network installed in a concrete road bridge
,
SPIE
2191
,
457
462
.
90.
Hjelme
DR
,
Bjerkan
L
,
Neegard
S
,
Rambech
JS
, and
Aarsnes
JV
(
1997
),
Application of Bragg grating sensors in the characterization of scaled marine vehicle modes
,
Appl. Opt.
36
,
328
336
.
91.
Foote P and Roberts D (1999), Carbon spars for superyachts and smart mast technology, RINA Proc of the Conf on The Modern Yacht, Portsmouth, Paper No. 13.
92.
Fisher
NE
,
Surowiec
J
,
Webb
DJ
,
Jackson
DA
,
Gavrilov
LR
,
Hand
JW
,
Zhang
L
, and
Bennion
I
(
1997
),
In-fiber Bragg gratings for ultrasonic medical applications
,
Meas. Sci. Technol.
8
,
1050
1054
.
93.
Rao
YJ
,
Webb
DJ
,
Jackson
DA
,
Zhang
L
, and
Bennion
I
(
1997
),
In-fiber Bragg grating temperature sensor system for medical applications
,
J. Lightwave Technol.
15
,
779
785
.
94.
Ferdinand
P
,
Magne
S
,
Dewynter-Marty
V
,
Martinez
C
,
Rougeault
S
, and
Bugaud
M
(
1997
),
Applications of Bragg grating sensors in Europe
,
Optical Society of America Technical Digest Series
16
,
14
19
.
95.
Rao
YJ
(
1999
),
Recent progress in applications of in-fiber Bragg grating sensors
,
Opt. Lasers Eng.
31
,
297
324
.
96.
Sivanesan
P
,
Sirkis
J
,
Venkat
V
,
Shi
YC
,
Reddy
CJ
, and
Sankaran
S
(
1999
),
Simultaneous measurement of temperature and strain using a single Bragg grating
,
SPIE
3670
,
92
103
.
97.
Wei CY, James SW, Ye CC, Dykes ND, Tatam RP, and Irving PE (1999), Strain capability of optical fiber Bragg grating sensing in composite smart structures, Proc of 12th Int Conf on Composite Materials, Theme: Smart Materials and Smart Manufacturing, Paper 443.
98.
Murukeshan
VM
,
Chan
PY
,
Ong
LS
, and
Asundi
A
(
2001
),
Intracore fiber Bragg gratings for strain measurement in embedded composite structures
,
Appl. Opt.
40
,
125
149
.
99.
Kuang
KSC
,
Kenny
R
,
Whelan
M
,
Cantwell
WJ
, and
Chalker
PR
(
2001
),
Residual strain measurement and impact response of optical fiber Bragg grating sensors in fiber-metal laminates
,
Smart Mater. Struct.
10
,
338
346
.
100.
Wood
K
,
Brown
T
,
Rogowski
R
, and
Jensen
B
(
2000
),
Fiber optic sensors for health-monitoring of morphing airframes: I Bragg grating strain and temperature sensor
,
Smart Mater. Struct.
9
,
163
169
.
101.
Wood
K
,
Brown
T
,
Rogowski
R
, and
Jensen
B
(
2000
),
Fiber optic sensors for health-monitoring of morphing airframes: II Chemical sensing using optical fibers with Bragg gratings
,
Smart Mater. Struct.
9
,
170
174
.
102.
Du
W
,
Tao
XM
,
Tam
HY
, and
Choy
CL
(
1998
),
Fundamentals and applications of optical fiber Bragg grating sensors to textile structural composites
,
Compos. Struct.
42
,
217
229
.
103.
Davis
MA
,
Kersey
AD
,
Sirkis
J
, and
Friebele
EJ
(
1994
),
Fiber optic Bragg grating array for shape and vibration mode sensing
,
SPIE
2191
,
94
102
.
104.
Friebele
EJ
,
Askins
CG
,
Putnam
MA
,
Florio
Jr
J
,
Fosha
Jr
AA
,
Donti
RP
, and
Mosley
CD
(
1994
),
Distributed strain sensing with fiber Bragg grating arrays embedded in CRTM™ composites
,
SPIE
2361
,
338
341
.
105.
Friebele
EJ
,
Askins
CG
,
Putnam
MA
,
Florio
Jr
J
,
Fosha
Jr
AA
,
Donti
RP
, and
Blosser
PG
(
1994
),
Distributed strain sensing with fiber Bragg grating arrays embedded in CRTM™ composites
,
Electron. Lett.
30
,
1783
1784
.
106.
Friebele
EJ
,
Askins
CG
,
Putnam
MA
,
Heider
PE
,
Blosser
RG
,
Florio
Jr
J
,
Donti
RP
, and
Garcia
J
(
1996
),
Demonstration of distributed strain sensing in production scale instrumented structures
,
SPIE
2721
,
118
124
.
107.
O’Dwyer
MJ
,
Maistros
GM
,
James
SW
,
Tatam
RP
, and
Partridge
IK
(
1998
),
Relating the state of cure to the real-time internal strain development in a curing composite using in-fiber Bragg gratings and dielectric sensors
,
Meas. Sci. Technol.
9
,
1153
1158
.
108.
Kuang
KSC
,
Kenny
R
,
Whelan
MP
,
Cantwell
WJ
, and
Chalker
PR
(
2001
),
Embedded fiber Bragg grating sensors in advanced composite materials
,
Compos. Sci. Technol.
61
,
1379
1387
.
109.
Dewynter-Marty
V
,
Ferdinand
P
,
Bocherens
E
,
Carbone
R
,
Beranger
H
,
Bourasseau
H
,
DuPont
M
, and
Balageas
D
(
1998
),
Embedded fiber Bragg grating sensors for industrial composite cure monitoring
,
J. Intell. Mater. Syst. Struct.
9
,
785
787
.
110.
Menendez
JM
, and
Guemes
JA
(
2000
),
Bragg grating-based multiaxial strain sensing: its application to residual strain measurement in composite laminates
,
SPIE
3986
,
271
281
.
111.
Davis
MA
,
Bellemore
DG
,
Putnam
MA
, and
Kersey
DA
(
1996
),
Interrogation of 60 fiber Bragg grating sensors with microstrain resolution capability
,
Electron. Lett.
32
,
1393
1394
.
112.
Froggatt
M
(
1996
),
Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber
,
Appl. Opt.
35
,
5162
5164
.
113.
Froggatt
M
, and
Moore
J
(
1998
),
Distributed measurement of static strain in an optical fiber with multiple Bragg gratings at nominally equal wavelengths
,
Appl. Opt.
37
,
1741
1746
.
114.
Jones
RT
,
Berkoff
TA
,
Bellemore
DG
,
Early
DA
,
Sirkis
JS
,
Putnam
MA
,
Friebele
EJ
, and
Kersey
AD
(
1996
),
Cantilever-plate deformation monitoring using wavelength division multiplexed fiber Bragg grating sensors
,
SPIE
2718
,
258
268
.
115.
Kersey
AD
,
Davis
MA
,
Berkoff
TA
,
Dandridge
A
,
Jones
RT
,
Tsai
T
,
Cogdell
G
,
Wang
G
,
Havsgaard
GB
,
Pran
K
, and
Knudsen
S
(
1997
),
Transient load monitoring on a composite hull ship using distributed fiber optic Bragg grating sensors
,
SPIE
3042
,
421
430
.
116.
Davies
MA
,
Bellemore
DG
, and
Kersey
AD
(
1994
),
Structural strain mapping using a wavelength/time division addressed fiber Bragg grating array
,
SPIE
2361
,
342
345
.
117.
Kersey A (1995), Fiber optic sensor multiplexing techniques, Fiber Optic Smart Structures, Udd E (ed), Wiley, New York.
118.
Morey
WW
,
Duphy
JR
, and
Meltz
G
(
1991
),
Multiplexed fiber Bragg grating sensors
,
SPIE
1586
,
216
224
.
119.
Rao
YJ
(
1997
),
In-fiber Bragg grating sensors
,
Meas. Sci. Technol.
8
,
355
375
.
120.
Xu
MG
,
Archambault
JL
,
Reekie
L
, and
Dakin
JP
(
1994
),
Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors
,
Electron. Lett.
30
,
1085
1087
.
121.
Jung
J
,
Park
N
, and
Lee
B
(
2000
),
Simultaneous measurement of strain and temperature of strain and temperature by use of a single fiber Bragg grating written in an erbium:ytterbium-doped fiber
,
Appl. Opt.
39
,
1118
1120
.
122.
Brady
GP
,
Kalli
K
,
Webb
DJ
,
Jackson
DA
,
Reekie
L
, and
Archambault
JL
(
1997
),
Simulataneous measurement of strain and temperature using the first and second order diffraction wavelengths of Bragg gratings
,
IEE Proc.: Optoelectron.
144
,
156
161
.
123.
Haran
FM
,
Rew
JK
, and
Foote
PD
(
1998
),
A strain-isolated fiber Bragg grating sensor for temperature compensation of fiber Bragg grating strain sensors
,
Meas. Sci. Technol.
9
,
1163
1166
.
124.
McKenzie
I
,
Jones
R
,
Marshall
IH
, and
Galea
S
(
2000
),
Optical fiber sensor health-monitoring of bonded repair systems
,
Compos. Struct.
50
,
405
416
.
125.
Austin TSP, Gregson PJ, Dakin JP, Powell PM, and Singh MM (1999), Fatigue damage in carbon fiber reinforced aluminum alloy laminates, Proc of 5th Int Conf on Deformation and Fracture of Composites, 191–200.
126.
Bocherens
E
,
Bourasseau
S
,
Dewynter-Marty
V
,
Pys
S
,
Dupont
M
,
Ferdinand
P
, and
Berenger
H
(
2000
),
Damage detection in a radome sandwich material with embedded fiber optic sensors
,
Smart Mater. Struct.
9
,
310
315
.
127.
Dykes ND, O’Dwyer MO, James SW, Tatam RP, and Irving PE (1998), Mechanical and sensing performance of embedded in-fiber Bragg grating devices during impact testing of carbon fiber reinforced polymer composite, Proc of 4th ESSM and 2nd MIMR Conf, 449–456.
128.
Wei
CY
,
James
SW
,
Ye
CC
,
Tatam
RP
, and
Irving
PE
(2000), Application issues using fiber Bragg gratings as strain sensors in fiber composites, Strain 36, 143–150.
129.
Mrad
N
,
Sparling
S
, and
Laliberte
J
(
1999
),
Strain monitoring and fatigue life of Bragg grating fiber optic sensors
,
SPIE
3670
,
82
91
.
130.
Kalamkarov
AL
,
MacDonald
DO
,
Fitzgerald
SB
, and
Georgiades
AV
(
2000
),
Reliability assessment of pultruded FRP reinforcements with embedded fiber optic sensors
,
Compos. Struct.
50
,
69
78
.
131.
Tao
XM
,
Tang
LQ
,
Du
WC
, and
Choy
CL
(
2000
),
Internal strain measurement by fiber Bragg grating sensors in textile composites
,
Compos. Sci. Technol.
60
,
657
669
.
132.
Tang
LQ
,
Tao
XM
, and
Choy
CL
(
1999
),
Effectiveness and optimization of fiber Bragg grating sensor as embedded strain sensor
,
Smart Mater. Struct.
8
,
154
160
.
133.
Jarlas
R
and
Levin
K
(
1999
),
Location of embedded fiber optic sensors for minimized impact vulnerability
,
J. Intell. Mater. Syst. Struct.
10
,
187
194
.
134.
Dasgupta
A
,
Wan
Y
, and
Sirkis
JS
(
1992
),
Prediction of resin pocket geometry for stress analysis of optical fibers embedded in laminated composites
,
Smart Mater. Struct.
1
,
101
107
.
135.
Dasgupta
A
and
Sirkis
JS
(
1992
),
Importance of coatings to optical fiber sensors embedded in smart structures
,
AIAA J.
30
,
1337
1343
.
136.
Pak
YE
(
1992
),
Longitudinal shear transfer in fiber optic sensors
,
Smart Mater. Struct.
1
,
57
62
.
137.
Melin
LG
,
Levin
K
,
Nilsson
S
,
Palmer
SJP
, and
Rae
P
(
1999
),
A study of displacement field around embedded fiber optic sensors
,
Composites, Part A
30
,
1267
1275
.
138.
Salehi A, Tay A, Wilson D, and Smith DG (1989), Strain concentrations around embedded optical fibers by FEM and Moire´ interferometry, Proc of 5th Conf of Design and Manufacturing of Advanced Composites, ASM Int, 11–19.
139.
Waite
SR
, and
Sage
GN
(
1988
),
The failure of optical fibers embedded in composite materials
,
Composites
19
,
288
294
.
140.
Roberts
SSJ
and
Davidson
R
(
1992
),
Finite element analysis of composite laminates containing transversely embedded optical fiber sensors
,
SPIE
1777
,
115
122
.
141.
Eaton
NC
,
Drew
RC
, and
Geiger
H
(
1995
),
Finite element stress and strain analysis in composites with embedded optical fiber sensors
,
Smart Mater. Struct.
4
,
113
117
.
142.
Czarnek
R
,
Guo
YF
,
Bennett
KD
, and
Claus
RO
(
1988
),
Interferometric measurements of strain concentrations induced by an optical fiber embedded in a fiber reinforced composite
,
SPIE
986
,
43
54
.
143.
Singh
H
,
Sirkis
JS
, and
Dasgupta
A
(
1991
),
Micro-interaction of optical fibers embedded in laminated composites
,
SPIE
1588
,
76
85
.
144.
Glossop
NDW
,
Dubois
S
,
Tsaw
W
,
LeBlanc
M
,
Lymer
J
,
Measures
RM
, and
Tennyson
RC
(
1990
),
Optical fiber damage detection for aircraft composite leading edge
,
Composites
21
,
71
80
.
145.
Jensen
DW
,
Pascual
J
, and
August
JA
(
1992
),
Performance of graphite/bismaleimide laminates with embedded optical fibers, Part II: uniaxial compression
,
Smart Mater. Struct.
1
,
31
35
.
146.
Jensen
DW
,
Pascual
J
, and
August
JA
(
1992
),
Performance of graphite/bismaleimide laminates with embedded optical fibers, Part I: uniaxial tension
,
Smart Mater. Struct.
1
,
24
30
.
147.
Roberts
SSJ
and
Davidson
R
(
1991
),
Mechanical properties of composite materials containing embedded fiber optic sensors
,
SPIE
1588
,
326
341
.
148.
Carman
GP
,
Paul
CA
, and
Sendeckyj
GP
(
1993
),
Transverse strength of composites containing optical fibers
,
SPIE
1917
,
307
316
.
149.
Holl
M
and
Boyd
S
(
1993
),
The effects of embedded fiber optics on the mechanical properties of a composite host material
,
SPIE
1916
,
109
117
.
150.
Carman
GP
, and
Reifsnider
KL
(
1993
),
Analytical optimization of coating properties for actuators and sensors
,
J. Intell. Mater. Syst. Struct.
5
,
4
11
.
151.
Carman
GP
,
Averill
RC
,
Reifsnider
KL
, and
Reddy
JN
(
1992
),
Optimization of fiber coatings to minimize stress concentrations in composites materials
,
J. Compos. Mater.
27
,
589
612
.
152.
Leka
LG
and
Bayo
E
(
1989
),
A close look at the embeddment of optical fibers into composite structures
,
J. Compos. Technol. Res.
11
,
106
112
.
153.
Lee
DC
,
Lee
JJ
, and
Yun
SJ
(
1995
),
The mechanical characteristics of smart composite structures with embedded optical fiber sensors
,
Compos. Struct.
32
,
39
50
.
154.
Mall
S
,
Dosedel
SB
, and
Holl
MW
(
1996
),
The performance of graphite epoxy composite with embedded optical fibers under compression
,
Smart Mater. Struct.
5
,
209
215
.
155.
Blagojevic
B
,
Tsaw
W
,
McEwen
, and
Measures
RM
(
1989
),
The influence of embedded optical fibers on the interlamina fracture toughness of composites materials
,
Rev. Prog. Quant. Nondestr. Eval.
9
,
1213
1218
.
156.
Choi
C
,
Seo
DC
,
Lee
JJ
, and
Kim
JK
(
1998
),
Effect of embedded optical fibers on the interlaminar fracture toughness of composite laminates
,
Compos. Interfaces
5
,
225
240
.
157.
Melvin LD, Rogowski RS, Holben MS, Namkung JS, Kahl K, and Sirkis J (1992), Evaluation of acrylate and polyimide coated optical fibers as strain sensors in polymer composites, Active Materials and Adaptive Structures, Proc of ADPA/AIAA/ASME/SPIE Conf, 801-4, Bristol, UK.
158.
Jensen DW and Brzenchek DJ (1992), Fatigue of a composite laminate with embedded optical fibers, Proc of 7th Int Congress of Experimental Mechanics, 1319–1325.
159.
Davidson R and Roberts SSJ (1992), Short term fatigue behavior of composite materials containing embedded fiber optic sensors and actuators, Proc of 1st European Conf on Smart Structures and Materials, 255–262.
160.
Benchekchou
B
and
Ferguson
NS
(
1998
),
The effect of embedded optical fibers on the fatigue behavior of composite plates
,
Compos. Struct.
41
,
113
120
.
161.
Sirkis
JS
,
Chang
CC
, and
Smith
BT
(
1994
),
Low velocity impact of optical fiber embedded laminated graphite/epoxy panels, Part I: Macro-scale
,
J. Compos. Mater.
28
,
1347
1370
.
You do not currently have access to this content.