Abstract

We study the bending stiffness of symmetrically bent circular multilayer van der Waals (vdW) material sheets, which correspond to the nonisometric configuration in bulge tests. Frenkel sinusoidal function is employed to describe the periodic interlayer tractions due to the lattice structure nature and the bending stiffness of sheets is theoretically extracted via an energetic consideration. Our quantitative prediction shows good agreement with recent experimental results, where the bending stiffness of different types of sheets with the comparable thickness could follow a trend opposite to their Young’s moduli. On the basis of our model, we propose that this trend may experience a transition as the thickness decreases. Apart from the apparent effects of Young’s modulus and interlayer shear strength, the interlayer distance is also found to have an important impact on the bending stiffness. In addition, according to our analysis on the size effect, the bending stiffness of such symmetrically bent circular sheets can steadily own a relatively large value, in contrast to the cases of isometric deformations.

References

1.
Geim
,
A. K.
, and
Grigorieva
,
I. V.
,
2013
, “
Van der Waals Heterostructures
,”
Nature
,
499
(
7459
), pp.
419
425
.
2.
Kretinin
,
A. V.
,
Cao
,
Y.
,
Tu
,
J. S.
,
Yu
,
G. L.
,
Jalil
,
R.
,
Novoselov
,
K. S.
,
Haigh
,
S. J.
,
Haigh
S. J.
,
Gholinia
A.
,
Mishchenko
A.
,
Lozada
M.
,
Georgiou
T.
,
Woods
C. R.
,
Withers
F.
,
Blake
P.
,
Eda
G.
,
Wirsig
A.
,
Hucho
C.
,
Watanabe
K.
,
Taniguchi
T.
,
Geim
A. K.
, and
Gorbachev
R. V.
,
2014
, “
Electronic Properties of Graphene Encapsulated With Different Two-Dimensional Atomic Crystals
,”
Nano Lett.
,
14
(
6
), pp.
3270
3276
.
3.
Pizzocchero
,
F.
,
Gammelgaard
,
L.
,
Jessen
,
B. S.
,
Caridad
,
J. M.
,
Wang
,
L.
,
Hone
,
J.
,
Bøggild
,
P.
, and
Booth
,
T. J.
,
2016
, “
The Hot Pick-up Technique for Batch Assembly of Van der Waals Heterostructures
,”
Nat. Commun.
,
7
, p.
11894
.
4.
Levy
,
N.
,
Burke
,
S. A.
,
Meaker
,
K. L.
,
Panlasigui
,
M.
,
Zettl
,
A.
,
Guinea
,
F.
,
Castro Neto
,
A. H.
, and
Crommie
,
M. F.
,
2010
, “
Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles
,”
Science
,
329
(
5991
), pp.
544
547
.
5.
Shepard
,
G. D.
,
Ajayi
,
O. A.
,
Li
,
X.
,
Zhu
,
X. Y.
,
Hone
,
J.
, and
Strauf
,
S.
,
2017
, “
Nanobubble Induced Formation of Quantum Emitters in Monolayer Semiconductors
,”
2D Mater.
,
4
(
2
), p.
21019
.
6.
Yuk
,
J. M.
,
Park
,
J.
,
Ercius
,
P.
,
Kim
,
K.
,
Hellebusch
,
D. J.
,
Crommie
,
M. F.
,
Lee
,
J. Y.
,
Zettl
,
A.
, and
Alivisatos
,
A. P.
,
2012
, “
High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells
,”
Science
,
336
(
6077
), pp.
61
64
.
7.
Wang
,
G.
,
Dai
,
Z.
,
Xiao
,
J.
,
Feng
,
S.
,
Weng
,
C.
,
Liu
,
L.
,
Xu
,
Z.
,
Huang
,
R.
, and
Zhang
,
Z.
,
2019
, “
Bending of Multilayer Van der Waals Materials
,”
Phys. Rev. Lett.
,
123
(
11
), p.
116101
.
8.
Han
,
E.
,
Yu
,
J.
,
Annevelink
,
E.
,
Son
,
J.
,
Kang
,
D. A.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Ertekin
,
E.
,
Huang
,
P. Y.
, and
van der Zande
,
A. M.
,
2019
, “
Ultrasoft Slip-Mediated Bending in Few-Layer Graphene
,”
Nat. Mater.
,
19
(
3
), pp.
305
309
.
9.
Zhang
,
D. B.
,
Akatyeva
,
E.
, and
Dumitrică
,
T.
,
2011
, “
Bending Ultrathin Graphene at the Margins of Continuum Mechanics
,”
Phys. Rev. Lett.
,
106
(
25
), p.
255503
.
10.
Koskinen
,
P.
, and
Kit
,
O. O.
,
2010
, “
Approximate Modeling of Spherical Membranes
,”
Phys. Rev. B
,
82
(
23
), p.
235420
.
11.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
12.
Ma
,
X.
,
Liu
,
L.
,
Zhang
,
Z.
, and
Wei
,
Y.
,
2021
, “
A Method to Determine the Geometry-Dependent Bending Stiffness of Multilayer Graphene Sheets
,”
ASME J. Appl. Mech.
,
88
(
1
), p.
011004
.
13.
Pan
,
F.
,
Wang
,
G.
,
Liu
,
L.
,
Chen
,
Y.
,
Zhang
,
Z.
, and
Shi
,
X.
,
2019
, “
Bending Induced Interlayer Shearing, Rippling and Kink Buckling of Multilayered Graphene Sheets
,”
J. Mech. Phys. Solids
,
122
, pp.
340
363
.
14.
Dai
,
Z.
,
Hou
,
Y.
,
Sanchez
,
D. A.
,
Wang
,
G.
,
Brennan
,
C. J.
,
Zhang
,
Z.
,
Liu
,
L.
, and
Lu
,
N.
,
2018
, “
Interface-Governed Deformation of Nanobubbles and Nanotents Formed by Two-Dimensional Materials
,”
Phys. Rev. Lett.
,
121
(
26
), p.
266101
.
15.
Wang
,
D.
,
Chen
,
G.
,
Li
,
C.
,
Cheng
,
M.
,
Yang
,
W.
,
Wu
,
S.
,
Xie
,
G.
,
Zhang
,
J.
,
Zhao
,
J.
,
Lu,
X.
,
Chen
,
P.
,
Wang
,
G.
,
Meng
,
J.
,
Tang
,
J.
,
Yang
,
R.
,
He
,
C.
,
Liu
,
D.
,
Shi
,
D.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Feng
,
J.
,
Zhang
,
Y.
, and
Zhang
,
G.
,
2016
, “
Thermally Induced Graphene Rotation on Hexagonal Boron Nitride
,”
Phys. Rev. Lett.
,
116
(
12
), p.
126101
.
16.
Annett
,
J.
, and
Cross
,
G. L.
,
2016
, “
Self-Assembly of Graphene Ribbons by Spontaneous Self-Tearing and Peeling From a Substrate
,”
Nature
,
535
(
7611
), pp.
271
275
.
17.
Hod
,
O.
,
Meyer
,
E.
,
Zheng
,
Q.
, and
Urbakh
,
M.
,
2018
, “
Structural Superlubricity and Ultralow Friction Across the Length Scales
,”
Nature
,
563
(
7732
), pp.
485
492
.
18.
Koenig
,
S. P.
,
Boddeti
,
N. G.
,
Dunn
,
M. L.
, and
Bunch
,
J. S.
,
2011
, “
Ultrastrong Adhesion of Graphene Membranes
,”
Nat. Nanotechnol.
,
6
(
9
), pp.
543
546
.
19.
Khestanova
,
E.
,
Guinea
,
F.
,
Fumagalli
,
L.
,
Geim
,
A. K.
, and
Grigorieva
,
I. V.
,
2016
, “
Universal Shape and Pressure Inside Bubbles Appearing in Van der Waals Heterostructures
,”
Nat. Commun.
,
7
(
1
), p.
12587
.
20.
Wang
,
G.
,
Dai
,
Z.
,
Wang
,
Y.
,
Tan
,
P.
,
Liu
,
L.
,
Xu
,
Z.
,
Wei
,
Y.
,
Huang
,
R.
, and
Zhang
,
Z.
,
2017
, “
Measuring Interlayer Shear Stress in Bilayer Graphene
,”
Phys. Rev. Lett.
,
119
(
3
), p.
036101
.
21.
Sanchez
,
D. A.
,
Dai
,
Z.
,
Wang
,
P.
,
Cantu-Chavez
,
A.
,
Brennan
,
C. J.
,
Huang
,
R.
, and
Lu
,
N.
,
2018
, “
Mechanics of Spontaneously Formed Nanoblisters Trapped by Transferred 2D Crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
31
), pp.
7884
7889
.
22.
Peng
,
S.
, and
Wei
,
Y.
,
2016
, “
On the Influence of Interfacial Properties to the Bending Rigidity of Layered Structures
,”
J. Mech. Phys. Solids
,
92
, pp.
278
296
.
23.
Rice
,
J. R.
,
1992
, “
Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
,
40
(
2
), pp.
239
271
.
24.
Helfrich
,
W.
,
1973
, “
Elastic Properties of Lipid Bilayers: Theory and Possible Experiments
,”
Z. Naturforsch. C
,
28
(
11–12
), pp.
693
703
.
25.
Blakslee
,
O. L.
,
Proctor
,
D. G.
,
Seldin
,
E. J.
,
Spence
,
G. B.
, and
Weng
,
T.
,
1970
, “
Elastic Constants of Compression-Annealed Pyrolytic Graphite
,”
J. Appl. Phys.
,
41
(
8
), pp.
3373
3382
.
26.
Levita
,
G.
,
Molinari
,
E.
,
Polcar
,
T.
, and
Righi
,
M. C.
,
2015
, “
First-Principles Comparative Study on the Interlayer Adhesion and Shear Strength of Transition-Metal Dichalcogenides and Graphene
,”
Phys. Rev. B
,
92
(
8
), p.
085434
.
27.
Bertolazzi
,
S.
,
Brivio
,
J.
, and
Kis
,
A.
,
2011
, “
Stretching and Breaking of Ultrathin MoS2
,”
ACS Nano
,
5
(
12
), pp.
9703
9709
.
28.
Singer
,
I. L.
,
Bolster
,
R. N.
,
Wegand
,
J.
,
Fayeulle
,
S.
, and
Stupp
,
B. C.
,
1990
, “
Hertzian Stress Contribution to Low Friction Behavior of Thin MoS2 Coatings
,”
Appl. Phys. Lett.
,
57
(
10
), pp.
995
997
.
29.
Wei
,
Y.
,
Wang
,
B.
,
Wu
,
J.
,
Yang
,
R.
, and
Dunn
,
M. L.
,
2013
, “
Bending Rigidity and Gaussian Bending Stiffness of Single-Layered Graphene
,”
Nano Lett.
,
13
(
1
), pp.
26
30
.
30.
Zelisko
,
M.
,
Ahmadpoor
,
F.
,
Gao
,
H.
, and
Sharma
,
P.
,
2017
, “
Determining the Gaussian Modulus and Edge Properties of 2D Materials: From Graphene to Lipid Bilayers
,”
Phys. Rev. Lett.
,
119
(
6
), p.
068002
.
31.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1965
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
,
Dover Publications
,
New York
.
32.
Novoselov
,
K. S.
,
Mishchenko
,
A.
,
Carvalho
,
A.
, and
Castro Neto
,
A. H.
,
2016
, “
2D Materials and Van der Waals Heterostructures
,”
Science
,
353
(
6298
), p.
aac9439
.
33.
Yu
,
J.
,
Han
,
E.
,
Hossain
,
M. A.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Ertekin
,
E.
,
van der Zande
,
A. M.
, and
Huang
,
P. Y.
,
2021
, “
Designing the Bending Stiffness of 2D Material Heterostructures
,”
Adv. Mater.
,
33
(
9
), p.
2007269
.
You do not currently have access to this content.