Abstract

Fully atomistic simulations and a sandwich plate model are used to study the dynamic behavior of twisted 3R-MoS2 bilayers. The simulations demonstrate that for a very small twist angle, the Moiré pattern leads to the symmetry breaking of the interlayer van der Waals energy on the scale of tens of nanometers and causes the dynamic behavior of twisted 3R-MoS2 bilayers to show strong position dependence. In particular, obvious mode pair splitting is observed in twisted 3R-MoS2 bilayer resonators where the interlayer van der Waals energy distribution is nonaxisymmetric. An analysis of the results of these molecular dynamic calculations shows that this behavior can be well explained using the sandwich plate model considering the nonuniform interlayer shear effect. Moreover, the twisted 3R-MoS2 bilayer relaxation mechanism involves the transition from AA stacking order with higher interlayer van der Waals potential energy to AB or BA stacking order, resulting in local buckling in the bilayers. The natural frequencies of resonators dominated by AA domains are much lower than those of resonators dominated by AB domains and even less than those of single-layer 3R-MoS2. Furthermore, as the radius increases, the frequency shows an abnormal trend, and a frequency gap is observed in the resonators dominated by AA domains.

References

1.
Weber
,
P.
,
Guttinger
,
J.
,
Tsioutsios
,
I.
,
Chang
,
D. E.
, and
Bachtold
,
A.
,
2014
, “
Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities
,”
Nano Lett.
,
14
(
5
), pp.
2854
2860
.
2.
Luo
,
G.
,
Zhang
,
Z. Z.
,
Deng
,
G. W.
,
Li
,
H. O.
,
Cao
,
G.
,
Xiao
,
M.
,
Guo
,
G. C.
,
Tian
,
L.
, and
Guo
,
G. P.
,
2018
, “
Strong Indirect Coupling Between Graphene-Based Mechanical Resonators via a Phonon Cavity
,”
Nat. Commun.
,
9
(
1
), p.
383
.
3.
Yildirim
,
T.
,
Zhang
,
L.
,
Neupane
,
G. P.
,
Chen
,
S.
,
Zhang
,
J.
,
Yan
,
H.
,
Hasan
,
M. M.
,
Yoshikawa
,
G.
, and
Lu
,
Y.
,
2020
, “
Towards Future Physics and Applications via Two-Dimensional Material NEMS Resonators
,”
Nanoscale
,
12
(
44
), pp.
22366
22385
.
4.
Poot
,
M.
, and
van der Zant
,
H. S. J.
,
2012
, “
Mechanical Systems in the Quantum Regime
,”
Phys. Rep.
,
511
(
5
), pp.
273
335
.
5.
Davidovikj
,
D.
,
Alijani
,
F.
,
Cartamil-Bueno
,
S. J.
,
van der Zant
,
H. S. J.
,
Amabili
,
M.
, and
Steeneken
,
P. G.
,
2017
, “
Nonlinear Dynamic Characterization of Two-Dimensional Materials
,”
Nat. Commun.
,
8
(
1
), p.
1253
.
6.
Novoselov
,
K. S.
,
Mishchenko
,
A.
,
Carvalho
,
A.
, and
Castro Neto
,
A. H.
,
2016
, “
2D Materials and van der Waals Heterostructures
,”
Science
,
353
(
6298
), p.
aac9439
.
7.
Liang
,
S. J.
,
Cheng
,
B.
,
Cui
,
X.
, and
Miao
,
F.
,
2020
, “
Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities
,”
Adv. Mater.
,
32
(
27
), p.
e1903800
.
8.
Rohaizad
,
N.
,
Mayorga-Martinez
,
C. C.
,
Fojtů
,
M.
,
Latiff
,
N. M.
, and
Pumera
,
M.
,
2021
, “
Two-dimensional Materials in Biomedical, Biosensing and Sensing Applications
,”
Chem. Soc. Rev.
,
50
(
1
), pp.
619
657
.
9.
Liu
,
Y.
,
Huang
,
Y.
, and
Duan
,
X.
,
2019
, “
Van der Waals Integration Before and Beyond two-Dimensional Materials
,”
Nature
,
567
(
7748
), pp.
323
333
.
10.
Mao
,
N.
,
Lin
,
Y.
,
Bie
,
Y. Q.
,
Palacios
,
T.
,
Liang
,
L.
,
Saito
,
R.
,
Ling
,
X.
,
Kong
,
J.
, and
Tisdale
,
W. A.
,
2021
, “
Resonance-Enhanced Excitation of Interlayer Vibrations in Atomically Thin Black Phosphorus
,”
Nano Lett.
,
21
(
11
), pp.
4809
4815
.
11.
Li
,
L.
,
Kim
,
J.
,
Jin
,
C.
,
Ye
,
G. J.
,
Qiu
,
D. Y.
,
da Jornada
,
F. H.
,
Shi
,
Z.
, et al
,
2017
, “
Direct Observation of the Layer-Dependent Electronic Structure in Phosphorene
,”
Nat. Nanotechnol.
,
12
(
1
), pp.
21
25
.
12.
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
,
2005
, “
Resonance Analysis of Multi-Layered Graphene Sheets Used as Nanoscale Resonators
,”
Nanotechnology
,
16
(
10
), pp.
2086
2091
.
13.
Xue
,
Z.
,
Chen
,
G.
,
Wang
,
C.
, and
Huang
,
R.
,
2022
, “
Peeling and Sliding of Graphene Nanoribbons with Periodic van der Waals Interactions
,”
J. Mech. Phys. Solids
,
158
, p.
104698
.
14.
Han
,
E.
,
Yu
,
J.
,
Annevelink
,
E.
,
Son
,
J.
,
Kang
,
D. A.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Ertekin
,
E.
,
Huang
,
P. Y.
, and
van der Zande
,
A. M.
,
2020
, “
Ultrasoft Slip-Mediated Bending in few-Layer Graphene
,”
Nat. Mater.
,
19
(
3
), pp.
305
309
.
15.
He
,
Z.
,
Zhu
,
Y.
, and
Wu
,
H.
,
2020
, “
Edge Effect on Interlayer Shear in Multilayer two-Dimensional Material Assemblies
,”
Int. J. Solids Struct.
,
204–205
, pp.
128
137
.
16.
Ma
,
X.
,
Liu
,
L.
,
Zhang
,
Z.
, and
Wei
,
Y.
,
2021
, “
A Method to Determine the Geometry-Dependent Bending Stiffness of Multilayer Graphene Sheets
,”
ASME J. Appl. Mech.
,
88
(
1
), p.
011004
.
17.
Ma
,
X.
,
Liu
,
L.
,
Zhang
,
Z.
, and
Wei
,
Y.
,
2022
, “
Bending Stiffness of Circular Multilayer van der Waals Material Sheets
,”
ASME J. Appl. Mech.
,
89
(
3
), p.
031011
.
18.
Hod
,
O.
,
Meyer
,
E.
,
Zheng
,
Q.
, and
Urbakh
,
M.
,
2018
, “
Structural Superlubricity and Ultralow Friction Across the Length Scales
,”
Nature
,
563
(
7732
), pp.
485
492
.
19.
Feng
,
X.
,
Kwon
,
S.
,
Park
,
J. Y.
, and
Salmeron
,
M.
,
2013
, “
Superlubric Sliding of Graphene Nanoflakes on Graphene
,”
ACS Nano
,
7
(
2
), pp.
1718
1724
.
20.
Wang
,
G.
,
Dai
,
Z.
,
Xiao
,
J.
,
Feng
,
S.
,
Weng
,
C.
,
Liu
,
L.
,
Xu
,
Z.
,
Huang
,
R.
, and
Zhang
,
Z.
,
2019
, “
Bending of Multilayer van der Waals Materials
,”
Phys. Rev. Lett.
,
123
(
11
), p.
116101
.
21.
Liu
,
Y.
,
Xu
,
Z.
, and
Zheng
,
Q.
,
2011
, “
The Interlayer Shear Effect on Graphene Multilayer Resonators
,”
J. Mech. Phys. Solids
,
59
(
8
), pp.
1613
1622
.
22.
Zhang
,
Y.
, and
Wang
,
L.
,
2020
, “
Effects of the Van der Waals Force on the Vibration of Typical Multi-Layered Two-Dimensional Nanostructures
,”
Sci. Rep.
,
10
(
1
), p.
644
.
23.
Liu
,
R.
, and
Wang
,
L.
,
2020
, “
Nonlinear Forced Vibration of Bilayer van der Waals Materials Drum Resonator
,”
J. Appl. Phys.
,
128
(
14
), p.
145105
.
24.
Zhang
,
J.
,
Liu
,
R.
, and
Wang
,
L.
,
2021
, “
Negative Interlayer Shear Effect on a Double-Layered van der Waals Material Resonator
,”
Phys. Rev. B
,
104
(
8
), p.
085437
.
25.
Tran
,
K.
,
Choi
,
J.
, and
Singh
,
A.
,
2020
, “
Moiré and Beyond in Transition Metal Dichalcogenide Twisted Bilayers
,”
2D Mater.
,
8
(
2
), p.
022002
.
26.
Cao
,
Y.
,
Fatemi
,
V.
,
Demir
,
A.
,
Fang
,
S.
,
Tomarken
,
S. L.
,
Luo
,
J. Y.
,
Sanchez-Yamagishi
,
J. D.
, et al
,
2018
, “
Correlated Insulator Behaviour at Half-Filling in Magic-Angle Graphene Superlattices
,”
Nature
,
556
(
7699
), pp.
80
84
.
27.
Zhang
,
K.
, and
Tadmor
,
E. B.
,
2018
, “
Structural and Electron Diffraction Scaling of Twisted Graphene Bilayers
,”
J. Mech. Phys. Solids
,
112
, pp.
225
238
.
28.
Rivera
,
P.
,
Yu
,
H.
,
Seyler
,
K. L.
,
Wilson
,
N. P.
,
Yao
,
W.
, and
Xu
,
X.
,
2018
, “
Interlayer Valley Excitons in Heterobilayers of Transition Metal Dichalcogenides
,”
Nat. Nanotechnol.
,
13
(
11
), pp.
1004
1015
.
29.
Du
,
L.
,
Hasan
,
T.
,
Castellanos-Gomez
,
A.
,
Liu
,
G.-B.
,
Yao
,
Y.
,
Lau
,
C. N.
, and
Sun
,
Z.
,
2021
, “
Engineering Symmetry Breaking in 2D Layered Materials
,”
Nat. Rev. Phys.
,
3
(
3
), pp.
193
206
.
30.
Ribeiro-Palau
,
R.
,
Zhang
,
C.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Hone
,
J.
, and
Dean
,
C. R.
,
2018
, “
Twistable Electronics with Dynamically Rotatable Heterostructures
,”
Science
,
361
(
6403
), pp.
690
693
.
31.
Jiang
,
J. W.
,
2015
, “
Parametrization of Stillinger-Weber Potential Based on Valence Force Field Model: Application to Single-Layer MoS2 and Black Phosphorus
,”
Nanotechnology
,
26
(
31
), p.
315706
.
32.
Liang
,
T.
,
Phillpot
,
S. R.
, and
Sinnott
,
S. B.
,
2012
, “
Erratum: Parametrization of a Reactive Many-Body Potential for Mo–S Systems [Phys. Rev. B 79, 245110 (2009)]
,”
Phys. Rev. B
,
85
(
19
), p.
199903
.
33.
Naik
,
M. H.
,
Maity
,
I.
,
Maiti
,
P. K.
, and
Jain
,
M.
,
2019
, “
Kolmogorov–Crespi Potential for Multilayer Transition-Metal Dichalcogenides: Capturing Structural Transformations in Moiré Superlattices
,”
J. Phys. Chem. C
,
123
(
15
), pp.
9770
9778
.
34.
Wijk
,
M. M. V.
,
Schuring
,
A.
,
Katsnelson
,
M. I.
, and
Fasolino
,
A.
,
2015
, “
Relaxation of Moiré Patterns for Slightly Misaligned Identical Lattices: Graphene on Graphite
,”
2D Mater.
,
2
(
3
), p.
034010
.
35.
Jain
,
S. K.
,
Juričić
,
V.
, and
Barkema
,
G. T.
,
2016
, “
Structure of Twisted and Buckled Bilayer Graphene
,”
2D Mater.
,
4
(
1
), p.
015018
.
36.
Li
,
H.
,
Li
,
S.
,
Naik
,
M. H.
,
Xie
,
J.
,
Li
,
X.
,
Wang
,
J.
,
Regan
,
E.
, et al
,
2021
, “
Imaging Moire Flat Bands in Three-Dimensional Reconstructed WSe2/WS2 Superlattices
,”
Nat. Mater.
,
20
(
7
), pp.
945
950
.
37.
Yoo
,
H.
,
Engelke
,
R.
,
Carr
,
S.
,
Fang
,
S.
,
Zhang
,
K.
,
Cazeaux
,
P.
,
Sung
,
S. H.
, et al
,
2019
, “
Atomic and Electronic Reconstruction at the van der Waals Interface in Twisted Bilayer Graphene
,”
Nat. Mater.
,
18
(
5
), pp.
448
453
.
38.
Weston
,
A.
,
Zou
,
Y.
,
Enaldiev
,
V.
,
Summerfield
,
A.
,
Clark
,
N.
,
Zolyomi
,
V.
,
Graham
,
A.
, et al
,
2020
, “
Atomic Reconstruction in Twisted Bilayers of Transition Metal Dichalcogenides
,”
Nat. Nanotechnol.
,
15
(
7
), pp.
592
597
.
You do not currently have access to this content.