Abstract

The development of constitutive models for shales has been a challenge for decades due to the difficulty of characterizing the strongly anisotropic macroscopic behavior related to the inherent mesostructure and damage mechanisms. In this paper, a spectral microplane damage model is developed for the anisotropic damage behavior of shales. The modeling challenge of the anisotropic elasticity in the microplane model is theoretically overcome by the spectral decomposition theory without limitation on the degree of the anisotropy compared with other microplane models. The stiffness tensor of anisotropic shales is effectively decomposed into four different eigenmodes with the activation of certain groups of microplanes corresponding to the specific orientation of the applied stresses. The inherent and the induced anisotropic behavior is thus characterized by proposing suitable microplane relations on certain eigenmodes directly reflecting the initial mesostructure and the failure mechanisms. For the challenge of the postpeak softening behavior, two-scalar damage variables are introduced to characterize the tensile and the shear damage related to the opening and the closure of microcracks under different stress conditions. Comparison between numerical simulation and experimental data shows that the proposed model provides satisfactory predictions for both weakly and highly anisotropic shales including prepeak nonlinear behavior, failure strengths, and postpeak softening under different confining pressures and different bedding plane orientations.

References

1.
McLamore
,
R.
, and
Gray
,
K. E.
,
1967
, “
The Mechanical Behavior of Anisotropic Sedimentary Rocks
,”
J. Eng. Ind.
,
89
(
1
), pp.
62
73
. 10.1115/1.3610013
2.
Amadei
,
B.
,
1996
, “
Importance of Anisotropy When Estimating and Measuring In Situ Stresses in Rock
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
33
(
3
), pp.
293
325
. 10.1016/0148-9062(95)00062-3
3.
Lonardelli
,
I.
,
Wenk
,
H. R.
, and
Ren
,
Y.
,
2007
, “
Preferred Orientation and Elastic Anisotropy in Shales
,”
Geophysics.
,
72
(
2
), pp.
D33
D40
. 10.1190/1.2435966
4.
Sondergeld
,
C. H.
, and
Rai
,
C. S.
,
2011
, “
Elastic Anisotropy of Shales
,”
Leading Edge
,
30
(
3
), pp.
324
331
. 10.1190/1.3567264
5.
Lisjak
,
A.
,
Grasselli
,
G.
, and
Vietor
,
T.
,
2014
, “
Continuum–Discontinuum Analysis of Failure Mechanisms Around Unsupported Circular Excavations in Anisotropic Clay Shales
,”
Int. J. Rock Mech. Min. Sci.
,
65
, pp.
96
115
. 10.1016/j.ijrmms.2013.10.006
6.
Kwasniewsi
,
M. A.
,
1993
, “Mechanical Behaviour of Anisotropic Rocks,”
Comprehensive Rock Engineering
,
J.
Hudson
, ed., Vol.
I
:
Fundamentals
,
Pergamon Press
,
Oxford
.
7.
Niandou
,
H.
,
Shao
,
J. F.
,
Henry
,
J. P.
, and
Fourmaintraux
,
D.
,
1997
, “
Laboratory Investigation of the Mechanical Behaviour of Tournemire Shale
,”
Int. J. Rock Mech. Min. Sci.
,
34
(
1
), pp.
3
16
. 10.1016/S1365-1609(97)80029-9
8.
Sone
,
H.
, and
Zoback
,
M. D.
,
2013
, “
Mechanical Properties of Shale-Gas Reservoir Rocks—Part 1: Static and Dynamic Elastic Properties and Anisotropy
,”
Geophysics
,
78
(
5
), pp.
D378
D389
. 10.1190/geo2013-0050.1
9.
Heller
,
R.
,
Vermylen
,
J.
, and
Zoback
,
M.
,
2014
, “
Experimental Investigation of Matrix Permeability of Gas Shales
,”
AAPG Bull.
,
98
(
5
), pp.
975
995
. 10.1306/09231313023
10.
Estrada
,
J. M.
, and
Bhamidimarri
,
R.
,
2016
, “
A Review of the Issues and Treatment Options for Wastewater From Shale Gas Extraction by Hydraulic Fracturing
,”
Fuel
,
182
, pp.
292
303
. 10.1016/j.fuel.2016.05.051
11.
Duveau
,
G.
,
Shao
,
J. F.
, and
Henry
,
J. P.
,
1998
, “
Assessment of Some Failure Criteria for Strongly Anisotropic Geomaterials
,”
Mech. Cohes.-Frict. Mater.
,
3
(
1
), pp.
1
26
. 10.1002/(SICI)1099-1484(199801)3:1<1::AID-CFM38>3.0.CO;2-7
12.
Pietruszczak
,
S.
,
Lydzba
,
D.
, and
Shao
,
J. F.
,
2002
, “
Modelling of Inherent Anisotropy in Sedimentary Rocks
,”
Int. J. Solids Struct.
,
39
(
3
), pp.
637
648
. 10.1016/S0020-7683(01)00110-X
13.
Hoek
,
E.
, and
Brown
,
E. T.
,
1980
, “
Empirical Strength Criterion for Rock Masses
,”
J. Geotech. Eng. Div.
,
106
(
9
), pp.
1013
1035
.
14.
Duveau
,
G.
, and
Shao
,
J. F.
,
1998
, “
A Modified Single Plane of Weakness Theory for the Failure of Highly Stratified Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
35
(
6
), pp.
807
813
. 10.1016/S0148-9062(98)00013-8
15.
Jaeger
,
J. C.
,
1960
, “
Shear Failure of Anistropic Rocks
,”
Geol. Mag.
,
97
(
1
), pp.
65
72
. 10.1017/S0016756800061100
16.
Zhu
,
Q.
,
Kondo
,
D.
,
Shao
,
J.
, and
Pensee
,
V.
, “
Micromechanical Modelling of Anisotropic Damage in Brittle Rocks and Application
,”
Int. J. Rock Mech. Min. Sci.
,
45
(
4
), pp.
467
477
. 10.1016/j.ijrmms.2007.07.014
17.
Pensée
,
V.
,
Kondo
,
D.
, and
Dormieux
,
L.
,
2002
, “
Micromechanical Analysis of Anisotropic Damage in Brittle Materials
,”
J. Eng. Mech.
,
128
(
8
), pp.
889
897
. 10.1061/(ASCE)0733-9399(2002)128:8(889)
18.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Met.
,
62
, pp.
307
324
.
19.
Bazant
,
Z. P.
,
1984
, “Microplane Model for Strain-Controlled Inelastic Behaviour,”
Mechanics of Engineering Materials
,
C. S.
Desai
, and
R. H.
Gallagher
, eds.,
Wiley
,
London
, Chapter 3.
20.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1998
, “Fracture and Size Effect in Concrete and Other Quasibrittle Materials,”
New Directions in Civil Engineering
,
W. F.
Chen
, ed.,
CRC Press
,
London
.
21.
Bazant
,
Z. P.
, and
Kim
,
J.-K.
,
1986
, “
Creep of Anisotropic Clay: Microplane Model
,”
J. Geotech. Eng.
,
112
(
4
), pp.
458
475
. 10.1061/(ASCE)0733-9410(1986)112:4(458)
22.
Brocca
,
M.
,
Bažant
,
Z. P.
, and
Daniel
,
I. M.
,
2001
, “
Microplane Model for Stiff Foams and Finite Element Analysis of Sandwich Failure by Core Indentation
,”
Int. J. Solids Struct.
,
38
(
44
), pp.
8111
8132
. 10.1016/S0020-7683(01)00007-5
23.
Li
,
C.
,
Caner
,
F. C.
,
Chau
,
V. T.
, and
Bažant
,
Z. P.
,
2017
, “
Spherocylindrical Microplane Constitutive Model for Shale and Other Anisotropic Rocks
,”
J. Mech. Phys. Solids
,
103
, pp.
155
178
. 10.1016/j.jmps.2017.03.006
24.
Cusatis
,
G.
,
Beghini
,
A.
, and
Bažant
,
Z. P.
,
2008
, “
Spectral Stiffness Microplane Model for Quasibrittle Composite Laminates-Part I: Theory
,”
J. Appl. Mech.
,
75
(
2
), p.
021009
. 10.1115/1.2744036
25.
Bazant
,
Z. P.
,
Xiang
,
Y. Y.
, and
Prat
,
P. C.
,
1996
, “
Microplane Model for Concrete. I. Stress-Strain Boundaries and Finite Strain
,”
J. Eng. Mech.
,
122
(
3
), pp.
245
254
. 10.1061/(ASCE)0733-9399(1996)122:3(245)
26.
Lee
,
Y.-K.
, and
Pietruszczak
,
S.
,
2015
, “
Tensile Failure Criterion for Transversely Isotropic Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
79
, pp.
205
215
. 10.1016/j.ijrmms.2015.08.019
27.
Platt
,
J. P.
, and
Vissers
,
R. L. M.
,
1980
, “
Extensional Structures in Anisotropic Rocks
,”
J. Struct. Geol.
,
2
(
4
), pp.
397
410
. 10.1016/0191-8141(80)90002-4
28.
Mazars
,
J.
,
1986
, “
A Description of Micro- and Macroscale Damage of Concrete Structures
,”
Eng. Fract. Mech.
,
25
(
5
), pp.
729
737
. 10.1016/0013-7944(86)90036-6
29.
Lemaitre
,
J.
,
1996
,
A Course on Damage Mechanics
,
Springer-Verlag
,
Berlin Heidelberg
.
30.
Voyiadjis
,
G. Z.
,
Taqieddin
,
Z. N.
, and
Kattan
,
P. I.
,
2008
, “
Anisotropic Damage–Plasticity Model for Concrete
,”
Int. J. Plast.
,
24
(
10
), pp.
1946
1965
. 10.1016/j.ijplas.2008.04.002
31.
Zhang
,
Y. Z.
,
2016
, “
Study on Anisotropy of Mechanical Properties of the Shale in West Hubei and East Chongqing (in Chinese)
,”
Southwest University of Science and Technology
,
Sichuan, China
.
You do not currently have access to this content.