A lattice Boltzmann method is developed for the solution of the advection and anisotropic dispersion equation. In the approach, a novel local equilibrium distribution function is formulated to preserve the advantage of using a single relaxation time for the recovery of the isotropic or anisotropic dispersion tensor in the equation. The method fully retains the innate kinetic features and the simple procedure of the standard lattice Boltzmann method, with an additional benefit of being suitable for rectangular lattices at little extra computational cost. The model has been verified and the results have shown that it can produce accurate solutions with great potential to general advection and dispersion problems, leading to broad applications within a variety of interdisciplinary areas.

1.
Amaziane
,
B.
,
Ossmani
,
M. E.
, and
Serres
,
C.
, 2008, “
Numerical Modeling of the Flow and Transport of Radionuclides in Heterogeneous Porous Media
,”
Computat. Geosci.
,
12
, pp.
437
449
.
2.
Couto
,
P. R. L.
, and
Malta
,
S. M. C.
, 2008, “
Interaction Between Sorption and Biodegradation Processes in the Contaminant Transport
,”
Ecol. Modell.
0304-3800,
214
, pp.
65
73
.
3.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Tezduyar
,
T. E.
, and
Hughes
,
T. J. R.
, 2007, “
Yzβ Discontinuity Capturing for Advection-Dominated Processes With Application to Arterial Drug Delivery
,”
Int. J. Numer. Methods Fluids
0271-2091,
54
, pp.
593
608
.
4.
Bodnár
,
T.
, and
Sequeira
,
A.
, 2008, “
Numerical Simulation of the Coagulation Dynamics of Blood
,”
Computational and Mathematical Methods in Medicine
,
9
, pp.
83
104
.
5.
Ebert
,
U.
,
Arrayás
,
M.
,
Temme
,
N.
,
Sommeijer
,
B.
, and
Huisman
,
J.
, 2001, “
Critical Conditions for Phytoplankton Blooms
,”
Bull. Math. Biol.
0092-8240,
63
, pp.
1095
1124
.
6.
Sakharov
,
D. V.
,
Kalachev
,
L. V.
, and
Rijken
,
D. C.
, 2002, “
Numerical Simulation of Local Pharmacokinetics of a Drug After Intravascular Delivery With an Eluting Stent
,”
J. Drug Target.
1061-186X,
10
, pp.
507
513
.
7.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
329
364
.
8.
Succi
,
S.
, 2001,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Oxford Press
,
London
.
9.
Sukop
,
M. C.
, and
Thorne
,
D. T. J.
, 2006,
Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers
,
Springer-Verlag
,
Berlin
.
10.
Calì
,
A.
,
Succi
,
S.
,
Cancelliere
,
A.
,
Benzi
,
R.
, and
Gramignani
,
M.
, 1992, “
Diffusion and Hydrodynamic Dispersion With the Lattice Boltzmann Method
,”
Phys. Rev. A
1050-2947,
45
, pp.
5771
5774
.
11.
Dawson
,
S. P.
,
Chen
,
S.
, and
Doolen
,
G. D.
, 1993, “
Lattice Boltzmann Computations for Reaction-Diffusion Equations
,”
J. Chem. Phys.
0021-9606,
98
, pp.
1514
1523
.
12.
Merks
,
R. M. H.
,
Hoekstra
,
A. G.
, and
Sloot
,
P. M. A.
, 2002, “
The Moment Propagation Method for Advection–Diffusion in the Lattice Boltzmann Method: Validation and Péclet Number Limits
,”
J. Comput. Phys.
0021-9991,
183
, pp.
563
576
.
13.
Jawerth
,
B.
,
Lin
,
P.
, and
Sinzinger
,
E.
, 1999, “
Lattice Boltzmann Models for Anisotropic Diffusion of Images
,”
J. Math. Imaging Vision
0924-9907,
11
, pp.
231
237
.
14.
Zhang
,
X. X.
,
Bengough
,
A. G.
,
Crawford
,
J. W.
, and
Young
,
I. M.
, 2002, “
A Lattice BGK Model for Advection and Anisotropic Dispersion Equation
,”
Adv. Water Resour.
0309-1708,
25
(
1
), pp.
1
8
.
15.
Rasin
,
I.
,
Succi
,
S.
, and
Miller
,
W.
, 2005, “
A Multi-Relaxation Lattice Kinetic Method for Passive Scalar Diffusion
,”
J. Comput. Phys.
0021-9991,
206
, pp.
453
462
.
16.
Ginzburg
,
I.
, 2005, “
Equilibrium-Type and Link-Type Lattice Boltzmann Models for Generic Advection and Anisotropic-Dispersion Equation
,”
Adv. Water Resour.
0309-1708,
28
, pp.
1171
1195
.
17.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
, 1954, “
A Model for Collision Processes in Gases. I: Small Amplitude Processes in Charged and Neutral One-Component System
,”
Phys. Rev.
0031-899X,
94
, pp.
511
525
.
18.
Zhou
,
J. G.
, 2004,
Lattice Boltzmann Methods for Shallow Water Flows
,
Springer-Verlag
,
Berlin
.
19.
McCracken
,
M. E.
, and
Abraham
,
J.
, 2005, “
Multiple-Relaxation-Time Lattice-Boltzmann Model for Multiphase Flow
,”
Phys. Rev. E
1063-651X,
71
, p.
036701
.
20.
Bear
,
J.
, 1972,
Dynamics of Fluids in Porous Media
,
American Elsevier
,
New York
.
21.
Wexler
,
E. J.
, 1992,
Analytical Solutions for One-, Two-, and Three-Dimentional Solute Transport in Ground-Water Systems With Uniform Flow
,
United States Government Printing Office
,
Washington, DC
.
You do not currently have access to this content.