The classical flexure problem of nonlinear incompressible elasticity is revisited assuming that the bending angle suffered by the block is specified instead of the usual applied moment. The general moment-bending angle relationship is then obtained and is shown to be dependent on only one nondimensional parameter: the product of the aspect ratio of the block and the bending angle. A Maclaurin series expansion in this parameter is then found. The first-order term is proportional to μ, the shear modulus of linear elasticity; the second-order term is identically zero because the moment is an odd function of the angle; and the third-order term is proportional to μ(4β1), where β is the nonlinear shear coefficient, involving third-order and fourth-order elasticity constants. It follows that bending experiments provide an alternative way of estimating this coefficient and the results of one such experiment are presented. In passing, the coefficients of Rivlin’s expansion in exact nonlinear elasticity are connected to those of Landau in weakly (fourth-order) nonlinear elasticity.

1.
Rivlin
,
R. S.
, 1949, “
Large Elastic Deformations of Isotropic Materials. VI. Further Results in the Theory of Torsion, Shear and Flexure
,”
Proc. R. Soc. London, Ser. A
0950-1207,
242
, pp.
173
195
.
2.
Green
,
A. E.
, and
Zerna
,
W.
, 1992,
Theoretical Elasticity
,
Dover
,
New York
.
3.
Ogden
,
R. W.
, 1997,
Non-Linear Elastic Deformations
,
Dover
,
New York
.
4.
Kanner
,
L. M.
, and
Horgan
,
C. O.
, 2008, “
Plane Strain Bending of Strain-Stiffening Rubber-Like Rectangular Blocks
,”
Int. J. Solids Struct.
0020-7683,
45
, pp.
1713
1729
.
5.
Gent
,
A. N.
, and
Cho
,
I. S.
, 1999, “
Surface Instabilities in Compressed or Bent Rubber Blocks
,”
Rubber Chem. Technol.
0035-9475,
72
, pp.
253
262
.
6.
Shield
,
R. T.
, 1992, “
Bending of a Beam or Wide Strip
,”
Q. J. Mech. Appl. Math.
0033-5614,
45
, pp.
567
573
.
7.
Haughton
,
D. M.
, 1999, “
Flexure and Compression of Incompressible Elastic Plates
,”
Int. J. Eng. Sci.
0020-7225,
37
, pp.
1693
1708
.
8.
Coman
,
C.
, and
Destrade
,
M.
, 2008, “
Asymptotic Results for Bifurcations in Pure Bending of Rubber Blocks
,”
Q. J. Mech. Appl. Math.
0033-5614,
61
, pp.
395
414
.
9.
Destrade
,
M.
,
Ní Annaidh
,
A.
, and
Coman
,
C. D.
, 2009, “
Bending Instabilities of Soft Biological Tissues
,”
Int. J. Solids Struct.
0020-7683,
46
, pp.
4322
4330
.
10.
Destrade
,
M.
,
Gilchrist
,
M. D.
,
Motherway
,
J. A.
, and
Murphy
,
J. G.
, 2010, “
Bimodular Rubber Buckles Early in Bending
,”
Mech. Mater.
0167-6636,
42
, pp.
469
476
.
11.
Zabolotskaya
,
E. A.
,
Ilinskii
,
Y. A.
,
Hamilton
,
M. F.
, and
Meegan
,
G. D.
, 2004, “
Modeling of Nonlinear Shear Waves in Soft Solids
,”
J. Acoust. Soc. Am.
0001-4966,
116
, pp.
2807
2813
.
12.
Destrade
,
M.
, and
Saccomandi
,
G.
, 2006, “
Solitary and Compact-Like Shear Waves in the Bulk of Solids
,”
Phys. Rev. E
1063-651X,
73
, pp.
065604
.
13.
Destrade
,
M.
, and
Saccomandi
,
G.
, 2008, “
Nonlinear Transverse Waves in Deformed Dispersive Solids
,”
Wave Motion
0165-2125,
45
, pp.
325
336
.
14.
Jacob
,
X.
,
Catheline
,
S.
,
Gennisson
,
J. -L.
,
Barrière
,
C.
,
Royer
,
D.
, and
Fink
,
M.
, 2007, “
Nonlinear Shear Wave Interaction in Soft Solids
,”
J. Acoust. Soc. Am.
0001-4966,
122
, pp.
1917
1926
.
15.
Hamilton
,
M. F.
,
Ilinskii
,
Y. A.
, and
Zabolotskaya
,
E. A.
, 2004, “
Separation of Compressibility and Shear Deformation in the Elastic Energy Density
,”
J. Acoust. Soc. Am.
0001-4966,
116
, pp.
41
44
.
16.
Erkamp
,
R. Q.
,
Skovoroda
,
A. R.
,
Emelianov
,
S. Y.
, and
O’Donnell
,
M.
, 2004, “
Measuring the Nonlinear Elastic Properties of Tissue-Like Phantoms
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
51
, pp.
410
419
.
17.
1995, “
Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading
, Am. Soc. Test. Mat., Paper No. ASTM E855-90.
18.
Gent
,
A. N.
, 1996, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
0035-9475,
69
, pp.
59
61
.
19.
Rivlin
,
R. S.
, 1997, “
Some Applications of Elasticity Theory to Rubber Engineering
,”
Collected Papers of R.S. Rivlin
, Vol.
1
,
Springer
,
New York
, pp.
9
16
.
20.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1986,
Theory of Elasticity
, 3rd ed.,
Pergamon
,
New York
.
21.
Ogden
,
R. W.
, 1974, “
On Isotropic Tensors and Elastic Moduli
,”
Proc. Cambridge Philos. Soc.
0068-6735,
75
, pp.
427
436
.
22.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
, 1951, “
Large Elastic Deformations of Isotropic Materials. VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
243
, pp.
251
288
.
23.
Goriely
,
A.
,
Vandiver
,
R.
, and
Destrade
,
M.
, 2008, “
Nonlinear Euler Buckling
,”
Proc. R. Soc. London, Ser. A
0950-1207,
464
, pp.
3003
3019
.
You do not currently have access to this content.