The local planar flow of incompressible fluid past an obstacle of semi-circular cross section is considered, the obstacle being mounted on a long flat surface. The far-field motion is one of uniform shear. Direct numerical solutions of the Navier-Stokes equations are described over a range of Reynolds numbers. The downstream eddy length and upstream position of maximum pressure gradient are found to agree with increased Reynolds number theory; in particular the agreement for the former quantity is close for Reynolds numbers above about 50.

1.
Smith
,
F. T.
, and
Walton
,
A. G.
,
1998
, “
Flow Past a Two- or Three-Dimensional Steep-Edged Roughness
,”
Proc. R. Soc. London, Ser. A
,
454
, pp.
31
69
.
2.
Bhattacharyya
,
S.
,
Dennis
,
S. C. R.
, and
Smith
,
F. T.
,
2001
, “
Separating Shear Flow Past a Surface-Mounted Blunt Obstacle
,”
J. Eng. Math.
,
39
, pp.
47
62
.
3.
Durst
,
F.
, and
Loy
,
T.
,
1985
, “
Investigation of Laminar Flow in a Pipe With Sudden Contraction of Cross Section Area
,”
Comput. Fluids
,
13
, pp.
15
36
.
4.
Williams
,
P. T.
, and
Baker
,
A. J.
,
1997
, “
Numerical Simulations of Laminar Flows Over a 3D Backward-Facing Step
,”
Int. J. Numer. Methods Fluids
,
24
, pp.
1159
1183
.
5.
Chang
,
T. P.
, and
Sheu
,
Tony W. H.
,
1999
, “
Time Evaluation of Laminar Flow Over a Three-Dimensional Backward-Facing Step
,”
Int. J. Numer. Methods Fluids
,
31
, pp.
721
745
.
6.
Giguere
,
P.
,
Dumes
,
G.
, and
Lemay
,
J.
,
1997
, “
Gurney Flap Scaling for Optimum Lift-to- Drag Ratio
,”
AIAA J.
,
35
, pp.
1888
1890
.
7.
Smith
,
F. T.
,
2000
, “
On Physical Mechanisms in Two- and Three-Dimensional Separations
,”
Philos. Trans. R. Soc. London, Ser. A
,
358
, pp.
3091
3111
.
8.
Martinuzzi
,
E. R.
, and
Tropea
,
C.
,
1993
, “
The Flow Around Surface Mounted Prismatic Obstacles Placed in a Fully Developed Channel Flow
,”
ASME J. Fluids Eng.
,
115
, pp.
85
92
.
9.
Meinders
,
E. R.
, and
Hanjalic
,
K.
,
1999
, “
Vortex Structure and Heat Transfer in Turbulent Flow Over a Wall-Mounted Matrix of Cubes
,”
Int. J. Heat Fluid Flow
,
20
, pp.
255
267
.
10.
Smith
,
F. T.
, and
Daniels
,
P. G.
,
1981
, “
Removal of Goldstein’s Singularity at Separation in Flow Past Obstacles in Wall Layers
,”
J. Fluid Mech.
,
110
, pp.
1
37
.
11.
Dennis
,
S. C. R.
, and
Smith
,
F. T.
,
1980
, “
Steady Flow Through a Channel With a Symmetrical Constriction in the Form of a Step
,”
Proc. R. Soc. London, Ser. A
,
372
, pp.
393
414
.
You do not currently have access to this content.