In this paper a zeroth-order shear deformation theory has been derived for static and dynamic analysis of laminated composite plates. The responses obtained by the theory for symmetric and antisymmetric laminates are compared with the existing solutions. The comparison firmly establishes that this new shear deformation theory can be used for both thick and thin laminated composite plates with high accuracy.

1.
Whitney
,
J. M.
, and
Leissa
,
A. W.
,
1969
, “
Analysis of Heterogeneous Anisotropic Plates
,”
ASME J. Appl. Mech.
,
36
, pp.
261
266
.
2.
Whitney
,
J. M.
,
1969
, “
The Effect of Transverse Shear Deformation in the Bending of Laminated Plates
,”
J. Compos. Mater.
,
3
, pp.
534
547
.
3.
Lo
,
K. H.
,
Christensen
,
R. M.
, and
Wu
,
E. M.
,
1977
, “
A High-Order Theory of Plate Deformation, Part 2: Laminated Plates
,”
ASME J. Appl. Mech.
,
44
, pp.
669
676
.
4.
Krishna Murthy
,
A. V.
,
1977
, “
Higher Order Theory for Vibration of Thick Plates
,”
AIAA J.
,
15
, pp.
1823
1824
.
5.
Murthy, M. V. V., 1981, “An Improved Transverse Shear Deformation Theory for Laminated Anisotropic Plates,” NASA technical Paper 1903, pp. 1–37.
6.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
51
, pp.
745
752
.
7.
Reddy
,
J. N.
,
1990
, “
A Review of Refined Theories of Laminated Composite plates
,”
Shock Vib. Dig.
,
22
, pp.
3
17
.
8.
Shimpi
,
R. C.
,
1998
, “
Zeroth Order Shear Deformation Theory for Plates
,”
AIAA J.
,
37
, pp.
524
526
.
9.
Pagano
,
N. J.
,
1970
, “
Exact Solutions for Rectangular Bi-directional Composites and Sandwich Plates
,”
J. Compos. Mater.
,
4
, pp.
20
34
.
10.
Reddy, J. N., 1997, Mechanics of Laminated Composite Plates Theory and Analysis, CRC Press, Boca Raton, FL.
11.
Mallikarjuna
and
Kant
,
T.
,
1989
, “
Free Vibration of Symmetrically Laminated Plates Using a Higher Order Theory With Finite Element Technique
,”
Int. J. Numer. Methods Eng.
,
28
, pp.
1875
1889
.
12.
Noor
,
A. K.
,
1972
, “
Free Vibration of Multi-Layered Composite Plates
,”
AIAA J.
,
11
, pp.
1038
1039
.
You do not currently have access to this content.