It is now well known that Fick’s Law is frequently inadequate for describing moisture diffusion in polymers or polymer composites. Non-Fickian or anomalous diffusion typically occurs when the rates of diffusion and viscoelastic relaxation in a polymer are comparable, and the ambient temperature is below the glass transition temperature Tg of the polymer. As a result, it is necessary to take into account the time-dependent response of a polymer, analogous to viscoelastic relaxation of mechanical properties, in constructing such a model. In this paper, a simple yet robust methodology is proposed that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data for a polymer below its Tg. Subsequently, these diffusion coefficients are used for predicting moisture concentration profiles through the thickness of a polymer. Moisture weight gain data at different temperatures for an epoxy adhesive is employed to calibrate the model. Specimen thickness independence of the modeling parameters is established through comparison with test data. A finite element procedure that extends this methodology to more complex shapes and boundary conditions is also validated. [S0021-8936(00)02402-8]

1.
Shen, C. H., and Springer, G. S., 1981, “Effects of Moisture and Temperature on the Tensile Strength of Composite Materials,” Environmental Effects on Composite Materials, G. S. Springer, ed., Technomic, Lancaster, PA, pp. 79–93.
2.
Gurtin
,
M. E.
and
Yatomi
,
C.
,
1979
, “
On a Model for Two Phase Diffusion in Composite Materials
,”
J. Compos. Mater.
,
13
, pp.
126
130
.
3.
Carter
,
H. G.
and
Kibler
,
K. G.
,
1978
, “
Langmuir-Type Model for Anomalous Diffusion in Composite Resins
,”
J. Compos. Mater.
,
12
, pp.
118
130
.
4.
Shirrell, C. D., Leisler, W. H., and Sandow, F. A., 1979, “Moisture-Induced Surface Damage in T300/5208 Graphite/Epoxy Laminates,” Nondestructive Evaluation and Flaw Criticality for Composite Materials, ASTM STP 696, R. B. Pipes, ed., American Society for Testing and Materials, Philadelphia, PA, pp. 209–222.
5.
Weitsman, Y., 1991, “Moisture in Composites: Sorption and Damage,” Fatigue of Composite Materials, K. L. Reifsnider, ed., Elsevier Science Publishers B.V., pp. 385–429.
6.
Frisch, H. L., 1966, “Irreversible Thermodynamics of Internally Relaxing Systems in the Vicinity of the Glass Transition,” Non-Equilibrium Thermodynamics, Variational Techniques, and Stability, R. J. Dennelly, R. Herman, and I. Prigogine, eds., University of Chicago Press, Chicago, IL, pp. 277–280.
7.
Crank, J., 1975, The Mathematics of Diffusion, 2nd Ed., Oxford University Press, Oxford, UK.
8.
Frisch
,
H. L.
,
1964
, “
Isothermal Diffusion in Systems with Glasslike Transitions
,”
J. Chem. Phys.
,
41
, No.
12
, pp.
3379
3683
.
9.
Weitsman
,
Y.
,
1987
, “
Stress Assisted Diffusion in Elastic and Viscoelastic Materials
,”
Mech. Phys. Solids
,
35
, No.
1
, pp.
73
93
.
10.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
, No.
3
, pp.
240
253
.
11.
Schapery, R. A., 1969, “Further Development of a Thermodynamic Constitutive Theory: Stress Formulation,” A&S Report No. 69-2, Purdue University, West Lafayette, IN.
12.
Cai
,
L. W.
, and
Weitsman
,
Y.
,
1994
, “
Non-Fickian Moisture Diffusion in Polymeric Composites
,”
J. Compos. Mater.
,
28
, No.
2
, pp.
130
154
.
13.
Weitsman
,
Y.
,
1990
, “
A Continuum Diffusion Model for Viscoelastic Materials
,”
J. Phys. Chem.
,
94
, No.
2
, pp.
961
968
.
14.
Weitsman
,
Y.
,
1987
, “
Coupled Damage and Moisture Transport in Fiber-Reinforced, Polymeric Composites
,”
Int. J. Solids Struct.
,
23
, No.
7
, pp.
1003
1025
.
15.
Roy
,
S.
,
Lefebvre
,
D. R.
,
Dillard
,
D. A.
, and
Reddy
,
J. N.
,
1989
, “
A Model for the Diffusion of Moisture in Adhesive Joints. Part III: Numerical Simulations
,”
J. Adhes.
,
27
, pp.
41
62
.
16.
Sancaktar
,
E.
, and
Baechtle
,
D.
,
1993
, “
The Effect of Stress Whitening on Moisture Diffusion in Thermosetting Polymers
,”
J. Adhes.
,
42
, pp.
65
85
.
17.
Wong
,
T.
, and
Broutman
,
L.
,
1985
, “
Moisture Diffusion in Epoxy Resins Part I: Non-Fickian Sorption Processes
,”
Polym. Eng. Sci.
,
25
, No.
9
, pp.
521
528
.
18.
Wong
,
T.
, and
Broutman
,
L.
,
1985
, “
Water in Epoxy Resins Part II: Diffusion Mechanisms
,”
Polym. Eng. Sci.
,
25
, No.
9
, pp.
529
534
.
19.
Roy
,
S.
,
1999
, “
Modeling of Anomalous Diffusion in Polymer Matrix Composites: A Finite Element Approach
,”
J. Compos. Mater.
,
33
, No.
14
, pp.
1318
1343
.
You do not currently have access to this content.