The classical St. Venant problems, i.e., simple tension, pure bending, and flexure by a transverse force, are considered for circular bars with elastic moduli that vary as a function of the radial coordinate. The problems are reduced to second-order ordinary differential equations, which are solved for a particular choice of elastic moduli. The special case of a bar with a constant shear modulus and the Poisson’s ratio varying is also considered and for this situation the problems are solved completely. The solutions are then used to obtain homogeneous effective moduli for inhomogeneous cylinders. Material inhomogeneities associated with spatially variable distributions of the reinforcing phase in a composite are considered. It is demonstrated that uniform distribution of the reinforcement leads to a minimum of the Young’s modulus in the class of spatial variations in the concentration considered.

1.
Aboudi, J., Pindera, M.-J., and Arnold, S., 1993, “Thermoelastic response of metal matrix composites with large diameter fibers subjected to thermal gradients,” NASA Technical Memorandum 106344.
2.
Abramowitz, M., and Stegun, I.A., 1964, Handbook of Mathematical Functions, Dover, New York.
3.
Cherradi
N.
,
Kawasaki
A.
, and
Gasik
M.
,
1994
, “
Worldwide trends in functional gradient materials research and development
,”
Composite Engineering
, Vol.
4
, pp.
883
894
.
4.
Christensen
R. M.
,
1990
, “
Critical evaluation for a class of micro-mechanics models
,”
J. Mech. Phys. Solids
, Vol.
38
, pp.
379
404
.
5.
Colchin, G. B., and Faverman, E.A., 1972, The Theory of Elasticity of Nonhomogeneous Bodies, Kishiniev.
6.
Delale
F.
, and
Erdogan
F.
,
1983
, “
The Crack Problem for a Nonhomogeneous Plane
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
50
, pp.
609
614
.
7.
Delale
F.
, and
Erdogan
F.
,
1988
, “
The interface crack in a nonhomogeneous medium
,”
Int. J. Engng. Sci.
, Vol.
28
, pp.
559
568
.
8.
Ely
J. F.
, and
Zienkiewicz
O. C.
,
1960
, “
Torsion of compound bars—A relaxation solution
,”
Int. J. Mech. Sci.
, Vol.
1
, pp.
356
365
.
9.
Erdogan
F.
, and
Ozturk
M.
,
1992
a, “
Diffusion problems in bonded nonhomogeneous materials with an interface cut
,”
Int. J. Engng. Sci.
, Vol.
30
, pp.
1507
1523
.
10.
Erdogan, F., and Ozturk, M., 1992b, “Fracture mechanics of debonding in dissimilar bonds through a functionally graded interface zone,” Proceedings of the Second International Symposium on Functionally Gradient Materials, Third International Ceramic Science & Technology Congress, San Francisco, pp. 31–38.
11.
Eshelby
J. D.
,
1957
, “
The determination of the elastic field of an ellipsoidal inclusion, and related problems
,”
Proc. Roy. Soc. Lond.
, Vol.
A241
, pp.
276
303
.
12.
Ferrari
M.
,
1992
, “
Anisotropic layers with through-thickness thermal and material variations
,”
J. Thermal Stresses
, Vol.
15
, pp.
439
445
.
13.
Ferrari
M.
,
1994
, “
Composite homogenization via the poly-inclusion method
,”
Composite Engineering
, Vol.
4
, pp.
37
45
.
14.
Gradshteyn, I.S., and Ryzhik, I.N., 1980, Table of Integrals, Series and Products.
15.
Gurtin, M.E., 1972, “The linear theory of elasticity,” Mechanics of Solids, Vol. II, C. Truesdell, ed., Springer-Verlag, New York.
16.
Holt, J.B., Koizumi, M., Hirai, T., and Munir, Z., 1992, Proceedings of the Second International Symposium on Functionally Gradient Materials, Third International Ceramic Science & Technology Congress, San Francisco, 1992.
17.
Knowles
J. K.
, “
On Saint Venant’s principle in the two-dimensional linear theory of elasticity
,”
Arch. Rat. Mech. Anal.
, Vol.
21
, pp.
1
22
.
18.
Lekhnitskii, S.G., 1981, The Theory of Elasticity of an Anisotropic Body, Mir, Moscow.
19.
Lutz
M. P.
, and
Ferrari
M.
,
1993
, “
Compression of a sphere with radially varying elastic moduli
,”
Composite Engineering
, Vol.
3
, pp.
873
884
.
20.
Muskhelishvili, N.I., 1963, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen.
21.
Reissner
E.
,
1964
, “
Note on the problem of St. Venant flexure
,”
ZAMP
, Vol.
15
, pp.
198
200
.
22.
Ronveaux, A., ed., 1995, Heun’s Differential Equations, Oxford University Press, Oxford, UK.
23.
Rooney, F.J., and Ferrari, M., 1994, “Torsion of a functionally graded shaft with rectangular cross section,” Materials and Design Technology, ASME, New York, pp. 285–289.
24.
Rooney
F. J.
, and
Ferrari
M.
,
1995
, “
Torsion and flexure of inhomogeneous elements
,”
Composite Engineering
, Vol.
5
, pp.
901
911
.
25.
St. Venant
A. J. C. B. de
,
1855
, “
Memoire sur la torsion des prismes
,”
Mem. Divers Savants Acad. Sci. Paris
, Vol.
14
, pp.
233
560
.
26.
Sternberg
E.
,
1954
, “
On Saint-Venant’s principle
,”
Quart. Appl. Math.
, Vol.
11
, pp.
393
402
.
27.
Schile
R. D.
,
1962
, “
Bending of non homogeneous bars
,”
Int. J. Mech. Sci.
, Vol.
5
, pp.
439
445
.
28.
Schile
R. D.
, and
Sierakowski
R. L.
,
1965
, “
On the Saint Venant problem for a nonhomogeneous elastic material
,”
Quart. Appl. Math.
, Vol.
23
, pp.
19
25
.
29.
von Mises
R.
,
1945
, “
On Saint-Venant’s principle
,”
Bull. Amer. Math. Soc.
, Vol.
51
, pp.
555
562
.
30.
Whittaker, E.T., and Watson, G.N., 1927, A Course of Modern Analysis, Cambridge University Press, London.
31.
Yamanouchi, M., Koizumi, M., Hirai, T., and Shiota, I., 1990, Proceedings of the First International Symposium on Functionally Gradient Materials, Tokyo, 1990.
This content is only available via PDF.
You do not currently have access to this content.