An efficient boundary element procedure for the dynamic analysis of crack propagation in unbounded and arbitrary shape finite bodies is presented. The procedure is based on the direct time domain formulation of the boundary element method. A moving singular element and a remeshing technique have been developed to model the asymptotic solution of the stresses near the propagating crack tip. These ideas are easily implemented for a boundary discretization as opposed to similar procedures previously developed in a finite element context. The method is applied to problems of dynamic crack propagation in finite and infinite elastic domains. The obtained numerical results are compared with infinite domain analytical solutions and with available numerical solutions for finite domains.

This content is only available via PDF.
You do not currently have access to this content.