Optimization of the buckling load of a laminated-composite, circular-cylindrical shell subjected to axial compression, external pressure, torsion, or a combination thereof is undertaken. In the optimization procedure it is assumed that the shell has a fixed weight (length, radius and thickness); the buckling load is taken as the objective function which is maximized by adopting the lamina fiber orientations as the optimizing parameters. For the shell analysis a perturbation approach is used and the boundary conditions and nonlinear prebuckling effects are included; the analysis yields both the buckling load and the post-buckling character of the shell. The procedure developed is demonstrated for eight loading configurations. In addition, selected laminates were chosen for an experimental programme involving a series of graphite/epoxy shells. The predicted analytical and the measured experimental buckling loads are in very good agreement.

This content is only available via PDF.
You do not currently have access to this content.