Cold bending is applied at locations where the pipeline direction has to be changed in a horizontal or vertical plane. The process of cold bending usually results in residual stresses as well as changes in the material properties at the vicinity of the cold bend location which makes the study of the mechanical behaviour of cold bends indispensable. Due to discontinuous permafrost in arctic regions as well as slope instabilities and earthquakes cold bends within pipelines constructed in such locations can be subjected to significant tensile or compressive forces.

Experimental studies were carried out by Sen et al [1][2][3]in order to investigate the buckling behaviour of pressurized cold bends. In these experiments the curvature of the cold bend is increased in the presence of a constant internal pressure. In their experimental study a total of 8 full scale tests were conducted with a variety of pipe diameters, diameter to wall thickness ratio and steel grade. In this set of full scale tests one of the pipes with grade X65 failed due to fracture at the extrados after buckling and formation of wrinkles at the intrados[1].

Our previous work [4], [5] on this subject showed the simulations of this case using finite element analysis. These simulations demonstrated that indeed pipe body tensile side fracture can be observed for this particular pipe specification. Whereby the tension side fractures are expected starting from a specific internal pressure level. The simulation results showed that the equivalent plastic strain values at the cold bend extrados increase dramatically starting from a certain level of applied curvature in load cases with an internal pressure higher than a transition value. In this paper the effect of steel grade on this transition from compressive to tensile failure is investigated. Parametric studies are conducted for the entire range of steel grades tested in the experimental study of Sen et al. It is found that there is a linear proportionality between the steel grade and the transition internal pressure for steel grades between X60 and X80.

This content is only available via PDF.
You do not currently have access to this content.