For the rich gas transfer schemes, extraction of NGL from the natural gas is not required in the oil field or gas condensate field, so the gas treatment processes in the field is simplified and the expense from the storage and transportation of NGL is saved, and the gas processing plant could be located far from the field. Rich gas can be pipelined in single phase and/or in two-phase mode. Compared with the gas-condensate ones, the rich gas pipelines behave with lower liquid loading, and are easily controlled operationally. Therefore, the rich gas pipelining modes are increasingly preferred especially in offshore and desert petroleum developments. Prediction of the performances of rich gas flow in pipelines covers a series of calculations for fluid phase behavior, fluid properties, pressure gradient, liquid holdup and temperature drop. In the paper, a hydraulic and thermodynamic model for the analysis of rich gas flow in pipelines with single-phase or two-phase modes is outlined. On account of the low liquid holdup of rich gas two-phase flow in pipelines, the constitutive relation resulting from Ottens et al (2001) correlation is selected. The iterative method to compute the pressure gradient, liquid holdup, and temperature drop of a pipe increment is developed, which shows fast convergence and good stability through case computations. In the end, the performances of non-isothermal rich gas flow in the undulating offshore long-distance pipeline in China is investigated by analyzing the profiles of pressure, temperature, velocity and liquid holdup. The predicted results in this study agree well with the operating data. The theoretical analysis, and comparison of calculated results with operating data and OLGA indicate that the presented model for analyzing rich gas flow behavior in small diameter pipelines looks reasonable.

This content is only available via PDF.
You do not currently have access to this content.