Hybrid energy harvesting is a concept that can be applied to improve the performance of the conventional standalone energy harvesters. In this study, a hybrid energy harvesting device is presented that harvests energy from solar radiation and mechanical vibration by simultaneously combining the photovoltaic, piezoelectric, electrostatic, and electromagnetic mechanisms. The device consists of a bimorph piezoelectric cantilever beam having Lead Zirconate Titanate crystal layers on top and bottom surfaces of an Aluminum substrate. Two sets of comb electrodes (capacitors) are attached on two sides of the substrate. A permanent magnet is attached at the tip which oscillates within a stationary coil inside a casing. The exterior surface of the casing is covered by organic photovoltaic panel that captures energy from illumination. All the segments are interconnected by an electric circuit to generate combined output when subjected to solar radiation and mechanical vibration. Results for power output are obtained at the first resonance frequency of the beam with a common optimum load resistance. As the power outputs of all the mechanisms are combined, a high power efficiency can be achieved by the proposed hybrid energy harvester.
Skip Nav Destination
ASME 2018 International Mechanical Engineering Congress and Exposition
November 9–15, 2018
Pittsburgh, Pennsylvania, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5200-2
PROCEEDINGS PAPER
A Hybrid Energy Harvesting System Based on Solar Radiation and Mechanical Vibration
M. Shafiqur Rahman,
M. Shafiqur Rahman
University of New Orleans, New Orleans, LA
Search for other works by this author on:
Uttam K. Chakravarty
Uttam K. Chakravarty
University of New Orleans, New Orleans, LA
Search for other works by this author on:
M. Shafiqur Rahman
University of New Orleans, New Orleans, LA
Uttam K. Chakravarty
University of New Orleans, New Orleans, LA
Paper No:
IMECE2018-86928, V001T03A017; 12 pages
Published Online:
January 15, 2019
Citation
Rahman, MS, & Chakravarty, UK. "A Hybrid Energy Harvesting System Based on Solar Radiation and Mechanical Vibration." Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Volume 1: Advances in Aerospace Technology. Pittsburgh, Pennsylvania, USA. November 9–15, 2018. V001T03A017. ASME. https://doi.org/10.1115/IMECE2018-86928
Download citation file:
21
Views
0
Citations
Related Proceedings Papers
Related Articles
Modeling and Analysis of Piezoelectric Energy Harvesting Beams Using the Dynamic Stiffness and Analytical Modal Analysis Methods
J. Vib. Acoust (February,2011)
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
J. Vib. Acoust (August,2008)
On the Effect of the Electrical Load on Vibration Energy Harvesting Under Stochastic Resonance
ASME J. Risk Uncertainty Part B (March,2021)
Related Chapters
Spice Model on High Frequency Vibration for CMUT Application
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Memristor: Bryond Moore's Law and Digital Computing
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)
The Resistens of Superficial Corrosion Layers Obtained Through Impulse Electrical Discharges Using Aluminium Electrodes
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)