The unstructured data available on the websites of manufacturing suppliers can provide useful insights into the technological and organizational capabilities of manufacturers. However, since the data is often represented in an unstructured form using natural language text, it is difficult to efficiently search and analyze the capability data and learn from it. The objective of this work is to propose a set of text analytics techniques to enable automated classification and ranking of suppliers based on their capability narratives. The supervised classification and semantic similarity measurement methods used in this research are supported by a formal thesaurus that uses SKOS (Simple Knowledge Organization System) for its syntax and semantics. Normalized Google Distance (NGD) was used as a metric for measuring the relatedness of terms. The proposed framework was validated experimentally using a hypothetical search scenario. The results indicate that the generated ranked list shows a high correlation with human judgment specially if the query concept vector and supplier concept vector belong to the same class. However, the correlation decreases when multiple overlapping classes of suppliers are mixed together. The findings of this research can be used to improve the precision and reliability of Capability Language Processing (CLP) tools and methods.

This content is only available via PDF.
You do not currently have access to this content.