Microreactor technology is considered a state of art technology that gained great attention from researchers due to the high effectiveness and the small residence time compared with other regular reactors. Great research work has been established to involve microreators in a variety of applications, including fuel production, food and chemical industries, medical applications. In the present study, a hepatic sinusoids-based microreactor is experimentally tested in Methylene blue degradation using titanium dioxide (TiO2) photocatalyst activated with ultraviolet lamp of wavelength 365 nm. Purification of water using photocatalysis is considered a promising technology that attract the industrial community. Different operating conditions are investigated including; flow rate, Methylene blue concentration, and TiO2 concentration. 3 different dye concentrations are used (10 ppm, 20 ppm, and 30 ppm) with 3 different photocatalyst concentrations (100 ppm, 300 ppm, and 500 ppm). The flow rate has a span from 0.25 ml/min to 1 ml/min. Experiments are conducted to determine best operating conditions. Results show that the microreactor system can be effectively used in dye degradation with a very small residence time. A degradation of over 95% was reached at a TiO2 concentration of 300 ppm and a flow rate of 0.25 ml/min for all tested dye concentrations.

This content is only available via PDF.
You do not currently have access to this content.