0
Review Article

Reorganization of the Vimentin Network in Smooth Muscle

[+] Author and Article Information
Dale D. Tang

Department of Molecular and
Cellular Physiology,
Albany Medical College,
47 New Scotland Avenue, MC-8,
Albany, NY 12118
e-mail: tangd@amc.edu

Guoning Liao, Brennan D. Gerlach

Department of Molecular and
Cellular Physiology,
Albany Medical College,
47 New Scotland Avenue, MC-8,
Albany, NY 12118

1Corresponding author.

Manuscript received August 24, 2018; final manuscript received September 21, 2018; published online January 18, 2019. Assoc. Editor: Chun Seow.

ASME J of Medical Diagnostics 2(1), 010801 (Jan 18, 2019) (5 pages) Paper No: JESMDT-18-1037; doi: 10.1115/1.4042313 History: Received August 24, 2018; Revised September 21, 2018

Vimentin intermediate filaments (IFs) link to desmosomes (intercellular junctions) on the membrane and dense bodies in the cytoplasm, which provides a structural base for intercellular and intracellular force transmission in smooth muscle. There is evidence to suggest that the vimentin framework plays an important role in mediating smooth muscle mechanical properties such as tension and contractile responses. Contractile activation induces vimentin phosphorylation at Ser-56 and vimentin network reorientation, facilitating contractile force transmission among and within smooth muscle cells. p21-activated kinase 1 and polo-like kinase 1 catalyze vimentin phosphorylation at Ser-56, whereas type 1 protein phosphatase dephosphorylates vimentin at this residue. Vimentin filaments are also involved in other cell functions including migration and nuclear positioning. This review recapitulates our current knowledge how the vimentin network modulates mechanical and biological properties of smooth muscle.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tang, D. D. , 2008, “ Invited Review: Intermediate Filaments in Smooth Muscle,” Am. J. Physiol.: Cell Physiol., 294(4), pp. C869–C878. [CrossRef] [PubMed]
Delva, E. , Tucker, D. K. , and Kowalczyk, A. P. , 2009, “ The Desmosome,” Cold Spring Harbor Perspect. Biol., 1(2), p. a002543. [CrossRef]
Wang, R. , Li, Q. F. , Anfinogenova, Y. , and Tang, D. D. , 2007, “ Dissociation of Crk-Associated Substrate From the Vimentin Network Is Regulated by p21-Activated Kinase on ACh Activation of Airway Smooth Muscle,” Am. J. Physiol.: Lung Cell. Mol. Physiol., 292(1), pp. L240–L248. [CrossRef] [PubMed]
Wang, R. , Li, Q. , and Tang, D. D. , 2006, “ Role of Vimentin in Smooth Muscle Force Development,” AJP Cell Physiol., 291(3), pp. C483–C489. [CrossRef]
Tang, D. D. , 2018, “ The Dynamic Actin Cytoskeleton in Smooth Muscle,” Adv. Pharmacol., 81, pp. 1–38. [CrossRef] [PubMed]
Tang, D. D. , 2015, “ Critical Role of Actin-Associated Proteins in Smooth Muscle Contraction, cell Proliferation, Airway Hyper-Responsiveness and Airway Remodeling,” Respir. Res., 16, p. 134. [CrossRef] [PubMed]
Gunst, S. J. , and Zhang, W. , 2008, “ Actin Cytoskeletal Dynamics in Smooth Muscle: A New Paradigm for the Regulation of Smooth Muscle Contraction,” AJP: Cell Physiol., 295(3), pp. C576–C587. [CrossRef]
Wang, R. , Cleary, R. A. , Wang, T. , Li, J. , and Tang, D. D. , 2014, “ The Association of Cortactin With Profilin-1 is Critical for Smooth Muscle Contraction,” J. Biol. Chem., 289(20), pp. 14157–14169. [CrossRef] [PubMed]
Wang, T. , Cleary, R. A. , Wang, R. , and Tang, D. D. , 2013, “ Role of the Adapter Protein Abi1 in Actin-Associated Signaling and Smooth Muscle Contraction,” J. Biol. Chem., 288(28), pp. 20713–20722. [CrossRef] [PubMed]
Henrion, D. , Terzi, F. , Matrougui, K. , Duriez, M. , Boulanger, C. M. , Colucci-Guyon, E. , Babinet, C. , Briand, P. , Friedlander, G. , Poitevin, P. , and Levy, B. I. , 1997, “ Impaired Flow-Induced Dilation in Mesenteric Resistance Arteries From Mice Lacking Vimentin,” J. Clin. Invest., 100(11), pp. 2909–2914. [CrossRef] [PubMed]
Li, J. , Wang, R. , Gannon, O. J. , Rezey, A. C. , Jiang, S. , Gerlach, B. D. , Liao, G. , and Tang, D. D. , 2016, “ Polo-Like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle,” J. Biol. Chem., 291(45), pp. 23693–23703. [CrossRef] [PubMed]
Eckes, B. , Dogic, D. , Colucci-Guyon, E. , Wang, N. , Maniotis, A. , Ingber, D. , Merckling, A. , Langa, F. , Aumailley, M. , Delouvee, A. , Koteliansky, V. , Babinet, C. , and Krieg, T. , 1998, “ Impaired Mechanical Stability, Migration and Contractile Capacity in Vimentin-Deficient Fibroblasts,” J. Cell Sci., 111(Pt. 13), pp. 1897–1907. http://jcs.biologists.org/content/111/13/1897 [PubMed]
Gladilin, E. , Gonzalez, P. , and Eils, R. , 2014, “ Dissecting the Contribution of Actin and Vimentin Intermediate Filaments to Mechanical Phenotype of Suspended Cells Using High-Throughput Deformability Measurements and Computational Modeling,” J. Biomech., 47(11), pp. 2598–2605. [CrossRef] [PubMed]
Pollard, T. D. , 2004, “ Intermediate Filaments,” Cell Biology, Elsevier, New York, pp. 595–603.
Li, Q. F. , Spinelli, A. M. , Wang, R. , Anfinogenova, Y. , Singer, H. A. , and Tang, D. D. , 2006, “ Critical Role of Vimentin Phosphorylation at Ser-56 by p21-Activated Kinase in Vimentin Cytoskeleton Signaling,” J. Biol. Chem., 281(45), pp. 34716–34724. [CrossRef] [PubMed]
Tang, D. D. , Bai, Y. , and Gunst, S. J. , 2005, “ Silencing of p21-Activated Kinase Attenuates Vimentin Phosphorylation on Ser-56 and Reorientation of the Vimentin Network During Stimulation of Smooth Muscle Cells by 5-Hydroxytryptamine,” Biochem. J., 388(3), pp. 773–783. [CrossRef] [PubMed]
Liu, T. , Ghamloush, M. M. , Aldawood, A. , Warburton, R. , Toksoz, D. , Hill, N. S. , Tang, D. D. , and Kayyali, U. S. , 2014, “ Modulating Endothelial Barrier Function by Targeting Vimentin Phosphorylation,” J. Cell. Physiol., 229(10), pp. 1484–1493. [CrossRef] [PubMed]
Tang, D. D. , 2009, “ p130 Crk-Associated Substrate (CAS) in Vascular Smooth Muscle,” J. Cardiovasc. Pharmacol. Ther., 14(2), pp. 89–98. [CrossRef] [PubMed]
Anfinogenova, Y. , Wang, R. , Li, Q. F. , Spinelli, A. M. , and Tang, D. D. , 2007, “ Abl Silencing Inhibits CAS-Mediated Process and Constriction in Resistance Arteries,” Circ. Res., 101(4), pp. 420–428. [CrossRef] [PubMed]
Jia, L. , and Tang, D. D. , 2010, “ Abl Activation Regulates the Dissociation of CAS From Cytoskeletal Vimentin by Modulating CAS Phosphorylation in Smooth Muscle,” AJP: Cell Physiol., 299(3), pp. C630–C637. [CrossRef]
Wang, Y. , Rezey, A. C. , Wang, R. , and Tang, D. D. , 2018, “ Role and Regulation of Abelson Tyrosine Kinase in Crk-Associated Substrate/Profilin-1 Interaction and Airway Smooth Muscle Contraction,” Respir. Res., 19(1), p. 4. [CrossRef] [PubMed]
Li, Q. F. , Spinelli, A. M. , and Tang, D. D. , 2009, “ Cdc42GAP, Reactive Oxygen Species, and the Vimentin Network,” AJP: Cell Physiol., 297(2), pp. C299–C309. [CrossRef]
Wang, T. , Wang, R. , Cleary, R. A. , Gannon, O. J. , and Tang, D. D. , 2015, “ Recruitment of Beta-Catenin to N-Cadherin is Necessary for Smooth Muscle Contraction,” J. Biol. Chem., 290(14), pp. 8913–8924. [CrossRef] [PubMed]
Li, J. , Wang, R. , and Tang, D. D. , 2016, “ Vimentin Dephosphorylation at Ser-56 is Regulated by Type 1 Protein Phosphatase in Smooth Muscle,” Respir. Res., 17(1), p. 91. [CrossRef] [PubMed]
Chang, L. , and Goldman, R. D. , 2004, “ Intermediate Filaments Mediate Cytoskeletal Crosstalk,” Nat. Rev. Mol. Cell Biol., 5(8), pp. 601–613. [CrossRef] [PubMed]
Gan, Z. , Ding, L. , Burckhardt, C. J. , Lowery, J. , Zaritsky, A. , Sitterley, K. , Mota, A. , Costigliola, N. , Starker, C. G. , Voytas, D. F. , Tytell, J. , Goldman, R. D. , and Danuser, G. , 2016, “ Vimentin Intermediate Filaments Template Microtubule Networks to Enhance Persistence in Cell Polarity and Directed Migration,” Cell Syst., 3(3), pp. 252–263. [CrossRef] [PubMed]
Paul, R. J. , Bowman, P. S. , and Kolodney, M. S. , 2000, “ Effects of Microtubule Disruption on Force, Velocity, Stiffness and [Ca(2+)](i) in Porcine Coronary Arteries,” Am. J. Physiol.: Heart Circ. Physiol., 279(5), pp. H2493–H2501. [CrossRef] [PubMed]
Zhang, D. , Jin, N. , Rhoades, R. A. , Yancey, K. W. , and Swartz, D. R. , 2000, “ Influence of Microtubules on Vascular Smooth Muscle Contraction,” J. Muscle Res. Cell Motil., 21(3), pp. 293–300. [CrossRef] [PubMed]
Marganski, W. A. , Gangopadhyay, S. S. , Je, H. D. , Gallant, C. , and Morgan, K. G. , 2005, “ Targeting of a Novel Ca+2/Calmodulin-Dependent Protein Kinase II Is Essential for Extracellular Signal-Regulated Kinase-Mediated Signaling in Differentiated Smooth Muscle Cells,” Circ. Res., 97(6), pp. 541–549. [CrossRef] [PubMed]
Leung, W. K. , Ching, A. K. , and Wong, N. , 2011, “ Phosphorylation of Caldesmon by PFTAIRE1 Kinase Promotes Actin Binding and Formation of Stress Fibers,” Mol. Cell. Biochem., 350(1–2), pp. 201–206. [CrossRef] [PubMed]
Zhao, Z. S. , and Manser, E. , 2012, “ PAK Family Kinases: Physiological Roles and Regulation,” Cell. Logist., 2(2), pp. 59–68. [CrossRef] [PubMed]
Li, Q. F. , and Tang, D. D. , 2009, “ Role of p47(phox) in Regulating Cdc42GAP, Vimentin, and Contraction in Smooth Muscle Cells,” Am. J. Physiol.: Cell Physiol., 297(6), pp. C1424–C1433. [CrossRef] [PubMed]
Petronczki, M. , Lenart, P. , and Peters, J. M. , 2008, “ Polo on the Rise-From Mitotic Entry to Cytokinesis With Plk1,” Dev. Cell., 14(5), pp. 646–659. [CrossRef] [PubMed]
Barr, F. A. , Sillje, H. H. , and Nigg, E. A. , 2004, “ Polo-Like Kinases and the Orchestration of Cell Division,” Nat. Rev. Mol. Cell Biol., 5(6), pp. 429–440. [CrossRef] [PubMed]
Amrani, Y. , and Panettieri, R. A. , 2003, “ Airway Smooth Muscle: Contraction and Beyond,” Int. J. Biochem. Cell Biol., 35(3), pp. 272–276. [CrossRef] [PubMed]
Cleary, R. A. , Wang, R. , Wang, T. , and Tang, D. D. , 2013, “ Role of Abl in Airway Hyper-Responsiveness and Airway Remodeling,” Respir. Res., 14(1), p. 105. [CrossRef] [PubMed]
Tang, D. D. , and Gerlach, B. D. , 2017, “ The Roles and Regulation of the Actin Cytoskeleton, Intermediate Filaments and Microtubules in Smooth Muscle Cell Migration,” Respir. Res., 18(1), p. 54. [CrossRef] [PubMed]
Pollard, T. D. , and Borisy, G. G. , 2003, “ Cellular Motility Driven by Assembly and Disassembly of Actin Filaments,” Cell, 112(4), pp. 453–465. [CrossRef] [PubMed]
Liao, G. , Wang, R. , Rezey, A. C. , Gerlach, B. D. , and Tang, D. D. , 2018, “ MicroRNA miR-509 Regulates ERK1/2, the Vimentin Network, and Focal Adhesions by Targeting Plk1,” Sci. Rep., 8(1), p. 12635. [CrossRef] [PubMed]
Gregor, M. , Osmanagic-Myers, S. , Burgstaller, G. , Wolfram, M. , Fischer, I. , Walko, G. , Resch, G. P. , Jorgl, A. , Herrmann, H. , and Wiche, G. , 2014, “ Mechanosensing Through Focal Adhesion-Anchored Intermediate Filaments,” FASEB J., 28(2), pp. 715–729. [CrossRef] [PubMed]
Tarbet, H. J. , Dolat, L. , Smith, T. J. , Condon, B. M. , O'Brien, E. T. , Valdivia, R. H. III , and Boyce, M. , 2018, “ Site-Specific Glycosylation Regulates the Form and Function of the Intermediate Filament Cytoskeleton,” eLife, 7, p. e31807.
Thaiparambil, J. T. , Bender, L. , Ganesh, T. , Kline, E. , Patel, P. , Liu, Y. , Tighiouart, M. , Vertino, P. M. , Harvey, R. D. , Garcia, A. , and Marcus, A. I. , 2011, “ Withaferin a Inhibits Breast Cancer Invasion and Metastasis at Sub-Cytotoxic Doses by Inducing Vimentin Disassembly and Serine 56 Phosphorylation,” Int. J. Cancer, 129(11), pp. 2744–2755. [CrossRef] [PubMed]
Tang, D. D. , and Anfinogenova, Y. , 2008, “ Physiologic Properties and Regulation of the Actin Cytoskeleton in Vascular Smooth Muscle,” J. Cardiovasc. Pharmacol. Ther., 13(2), pp. 130–140. [CrossRef] [PubMed]
Helfand, B. T. , Mendez, M. G. , Murthy, S. N. , Shumaker, D. K. , Grin, B. , Mahammad, S. , Aebi, U. , Wedig, T. , Wu, Y. I. , Hahn, K. M. , Inagaki, M. , Herrmann, H. , and Goldman, R. D. , 2011, “ Vimentin Organization Modulates the Formation of Lamellipodia,” Mol. Biol. Cell, 22(8), pp. 1274–1289. [CrossRef] [PubMed]
Deng, M. , Mohanan, S. , Polyak, E. , and Chacko, S. , 2007, “ Caldesmon is Necessary for Maintaining the Actin and Intermediate Filaments in Cultured Bladder Smooth Muscle Cells,” Cell Motil. Cytoskeleton, 64(12), pp. 951–965. [CrossRef] [PubMed]
Lanier, M. H. , Kim, T. , and Cooper, J. A. , 2015, “ CARMIL2 is a Novel Molecular Connection Between Vimentin and Actin Essential for Cell Migration and Invadopodia Formation,” Mol. Biol. Cell, 26(25), pp. 4577–4588. [CrossRef] [PubMed]
Etienne-Manneville, S. , 2018, “ Cytoplasmic Intermediate Filaments in Cell Biology,” Annu. Rev. Cell Dev. Biol., 34, pp. 1–28.
Keeling, M. C. , Flores, L. R. , Dodhy, A. H. , Murray, E. R. , and Gavara, N. , 2017, “ Actomyosin and Vimentin Cytoskeletal Networks Regulate Nuclear Shape, Mechanics and Chromatin Organization,” Sci. Rep., 7(1), p. 5219. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic illustration of intermediate filaments and the desmosome in smooth muscle. Vimentin intermediate filaments connect with the cytoplasmic domain of desmocollin and desmoglein via the linker proteins such as plakoglobin, plakophilin, and desmoplakin. The extracellular domains of desmocollin and desmoglein interact with their counterparts in adjacent cells to form the intercellular junction. Another end of vimentin filaments links to the cytoplasmic dense bodies to which actin filaments also attach. Desmin intermediate filaments are positioned in the peripheral of airway smooth muscle cells facilitating the connection of vimentin filaments to the desmosome.

Grahic Jump Location
Fig. 2

Regulation of vimentin phosphorylation at Ser-56 in smooth muscle. Besides myosin activation, contractile agonists activate NAD(P)H oxidase that promotes ROS generation. Increased ROS inhibits Cdc42GAP activity, and triggers the small GTPase that turns on PAK1. Activated PAK1 catalyzes vimentin phosphorylation at Ser-56, which induces vimentin network rearrangement. Phosphorylated vimentin also releases p130CAS, which promotes actin polymerization. In addition, vimentin phosphorylation is mediated by the SLK-Plk1 pathway, whereas its dephosphorylation is regulated by PP1. Vimentin network reorganization, myosin activation, and actin polymerization facilitate smooth muscle contraction.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In