Review Article

Mathematical Modeling and Virtual Reality Simulation of Surgical Tool Interactions With Soft Tissue: A Review and Prospective

[+] Author and Article Information
Kostyantyn Malukhin

McCormick School of Engineering,
Mechanical Engineering Department,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: k-malukhin@u.northwestern.edu

Kornel Ehmann

Fellow ASME
McCormick School of Engineering,
Mechanical Engineering Department,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: k-ehmann@northwestern.edu

Manuscript received December 10, 2017; final manuscript received February 13, 2018; published online March 21, 2018. Assoc. Editor: Linxia Gu.

ASME J of Medical Diagnostics 1(2), 020802 (Mar 21, 2018) (23 pages) Paper No: JESMDT-17-2055; doi: 10.1115/1.4039417 History: Received December 10, 2017; Revised February 13, 2018

This is an informed assessment of the state of the art and an extensive inventory of modeling approaches and methods for soft tissue/medical cutting tool interaction and of the associated medical processes and phenomena. Modeling and simulation through numerical, theoretical, computational, experimental, and other methods was discussed in comprehensive review sections each of which is concluded with a plausible prospective discussion biased toward the development of so-called virtual reality (VR) simulator environments. The finalized prospective section reflects on the future demands in the area of soft tissue cutting modeling and simulation mostly from a conceptual angle with emphasis on VR development requirements including real-time VR simulator response, cost-effective “close-to-reality” VR implementations, and other demands. The review sections that serve as the basis for the suggested prospective needs are categorized based on: (1) Major VR simulator applications including virtual surgery education, training, operation planning, intraoperative simulation, image-guided surgery, etc. and VR simulator types, e.g., generic, patient-specific and surgery-specific and (2) Available numerical, theoretical, and computational methods in terms of robustness, time effectiveness, computational cost, error control, and accuracy of modeling of certain types of virtual surgical interventions and their experimental validation, geared toward ethically driven artificial “phantom” tissue-based approaches. Digital data processing methods used in modeling of various feedback modalities in VR environments are also discussed.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Wang, L. , Hill, N. A. , Roper, S. M. , and Luo, X. , 2018, “Modelling Peeling- and Pressure-Driven Propagation of Arterial Dissection,” J. Eng. Math., 109(1), pp. 227–238.
Quesada, C. , Alfaro, I. , González, D. , Chinesta, F. , and Cueto, E. , 2017, “Haptic Simulation of Tissue Tearing During Surgery,” Int. J. Numer. Methods Biomed. Eng., 34(3), p. e2926.
Garbey, M. , Bass, B. L. , Collet, C. , de Mathelin, M. , and Tran-Son-Tay, R. , 2010, Computational Surgery and Dual Training, Springer-Verlag, New York. [CrossRef]
Deguchi, D. , Mori, K. , Mekada, Y. , Hasegawa, J.-I. , Toriwaki, J.-I. , and Noguchi, M. , 2006, “Development of a Virtual Needle Biopsy Simulation System for the Virtual Prostate,” Syst. Comput. Jpn., 37(1), pp. 93–104. [CrossRef]
De, S. , Lim, Y.-J. , Manivannan, M. , and Srinivasan, M. A. , 2006, “Physically Realistic Virtual Surgery Using the Point-Associated Finite Field (PAFF) Approach,” Presence, 15(3), pp. 294–308. [CrossRef]
Misra, S. , Ramesh, K. T. , and Okamura, A. M. , 2008, “Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review,” Presence: Teleoperators Virtual Environ., 17(5), pp. 463–491. [CrossRef]
Takacs, A. , Jordan, S. , Precup, R.-E. , Kovacs, L. , Tar, J. , Rudas, I. , and Haidegger, T. , 2014, “Review of Tool-Tissue Interaction Models for Robotic Surgery Applications,” 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl'any, Slovakia, Jan. 23–25, pp. 339–344.
Cueto, E. , and Chinesta, F. , 2014, “Real Time Simulation for Computational Surgery: A Review,” Adv. Model. Simul. Eng. Sci., 1(1), pp. 1–11. [CrossRef]
Miller, K. , Wittek, A. , Joldes, G. , Horton, A. , Dutta-Roy, T. , Berger, J. , and Morris, L. , 2010, “Modeling Brain Deformations for Computer-Integrated Neurosurgery,” Int. J. Numer. Methods Biomed. Eng., 26(1), pp. 117–138. [CrossRef]
Yang, T. , Yin, H. , Zhao, X. , Han, J. , and Xu, W. , 2014, “Interaction Modeling and Simulation of a Flexible Needle Insertion Into Soft Tissues,” Joint 45th International Symposium on Robotics and Eighth German Conference on Robotics (ISR/ROBOTIK 2014), Munich, Germany, June 2–3, pp. 611–616. http://ieeexplore.ieee.org/document/6840189/
Jackson, R. C. , and Cavusoglu, M. C. , 2012, “Modeling of Needle-Tissue Interaction Forces During Surgical Suturing,” IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, May 14–18, pp. 4675–4680.
Maghsoudi, A. , and Jahed, M. , 2010, “Multi-Parameter Sensitivity Analysis for Guided Needle Insertion Through Soft Tissue,” IEEE EMBS Conference on Biomedical Engineering & Sciences (IECBES 2010), Kuala Lumpur, Malaysia, Nov. 30–Dec. 2, pp. 97–100.
Jankowiak, T. , Rusinek, A. , List, G. , Sutter, G. , and Abed, F. , 2016, “Numerical Analysis for Optimizing the Determination of Dynamic Friction Coefficient,” Tribol. Int., 95, pp. 86–94. [CrossRef]
Chanthasopeephan, T. , Desai, J. P. , and Lau, A. C. W. , 2007, “Modeling Soft-Tissue Deformation Prior to Cutting for Surgical Simulation: Finite Element Analysis and Study of Cutting Parameters,” IEEE Trans. Biomed. Eng., 54(3), pp. 349–359. [CrossRef] [PubMed]
Misra, S. , Ramesh, K. T. , and Okamura, A. M. , 2010, “Modeling of Nonlinear Elastic Tissues for Surgical Simulation,” Comput. Methods Biomech. Biomed. Eng., 13(6), pp. 811–818. [CrossRef]
John, N. W. , Phillips, N. I. , Cenydd, L. A. , Coope, D. , Carleton-Bland, N. , Kamaly-Asl, I. , and Gray, W. P. , 2015, “A Tablet-Based Virtual Environment for Neurosurgery Training,” Presence, 24(2), pp. 155–162. [CrossRef]
Soler, L. , and Marescaux, J. , 2008, “Patient-Specific Surgical Simulation,” World J. Surg., 32(2), pp. 208–212. [CrossRef] [PubMed]
Soler, L. , and Marescaux, J. , 2015, “Computer Assisted Abdominal Surgery and Notes,” University of Strasbourg, Strasbourg, France, accessed Mar. 2, 2018, https://www.lirmm.fr/uee09/doc/Lecturers/Soler.pdf
Vidal, F. P. , Chalmers, N. , Gould, D. A. , Healey, A. E. , and John, N. W. , 2005, “Developing a Needle Guidance Virtual Environment With Patient-Specific Data and Force Feedback,” Int. Congr. Ser., 1281, pp. 418–423. [CrossRef]
Soler, L. , Nicolau, S. , Fasquel, J.-B. , Agnus, V. , Charnoz, A. , Hostettler, A. , Moreau, J. , Forest, C. , Mutter, D. , and Marescaux, J. , 2008, “Virtual Reality and Augmented Reality Applied to Laparoscopic and Notes Procedures,” IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), Paris, France, May 14–17, pp. 1399–1402.
Soler, L. , Cahill, R. , and Marescaux, J. , 2008, “Three Dimensional Imaging,” Biliary Lithiasis: Basic Science, Current Diagnosis and Management, G. Borzelino and C. Cordiano , eds., Springer, Milan, Italy, pp. 93–103. [CrossRef]
Hemelen, G. V. , Genechten, M. V. , Reiner, L. , Desmedt, M. , Verbruggen, E. , and Nadjmi, N. , 2015, “Three-Dimensional Virtual Planning in Orthognathic Surgery Enhances the Accuracy of Soft Tissue Prediction,” J. Cranio-Maxillo-Fac. Surg., 43(6)pp. 918–925. [CrossRef]
Doscher, M. E. , Garfein, E. S. , Bent, J. , and Tepper, O. M. , 2014, “Neonatal Mandibular Distraction Osteogenesis: Converting Virtual Surgical Planning Into an Operative Reality,” Int. J. Pediatr. Otorhinolaryngol., 78(2), pp. 381–384. [CrossRef] [PubMed]
Diana, M. , and Marescaux, J. , 2015, “Next Step in Minimally Invasive Surgery: Hybrid-Guided Surgery,” J. Pediatr. Surg., 50(1), pp. 30–36. [CrossRef] [PubMed]
Foruzan, A. H. , Chen, Y.-W. , Zoroofi, R. A. , and Kaibori, M. , 2010, “Interactive Visualization of Hepatic Parenchyma With Applications to Surgery Simulators,” 17th Iranian Conference of Biomedical Engineering (ICBME 2010), Isfahan, Iran, Nov. 3–4, pp. 1–4.
Kim, Y. , Lee, K. , and Kim, W. , 2008, “3D Virtual Simulator for Breast Plastic Surgery,” Comput. Animation Virtual Worlds, 19(3–4), pp. 515–526. [CrossRef]
Song, L. M. , Luo, J. , and Wen, Y. H. , 2009, “Three-Dimensional Virtual Surgery Based on CT Images,” Third International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2009), Beijing, China, June 11–13, pp. 1–4.
Liang, H. , and Shi, M. , 2009, “Design of Virtual Abdominal Surgery System for the UK's Royal Bournemouth Hospital,” International Conference on Knowledge and Systems Engineering (KSE), Hanoi, Vietnam, Oct. 13–17, pp. 39–43.
Kero, T. , Pettersson, A. , Fäldt, J. , Andersson, M. , Gillot, L. , Cannas, B. , DDS Näsström, K. , and Söderberg, R. , 2010, “Virtual Variation Simulation of CAD/CAM Template-Guided Surgeries Performed on Human Cadavers—Part 2,” J. Prosthet. Dent., 104(1), pp. 48–55. [CrossRef] [PubMed]
Uechi, J. , Tsuji, Y. , Konno, M. , Hayashi, K. , Shibata, T. , Nakayama, E. , and Mizoguchi, I. , 2015, “Generation of Virtual Models for Planning Orthognathic Surgery Using a Modified Multimodal Image Fusion Technique,” Int. J. Oral Maxillofac. Surg., 44(4), pp. 462–469. [CrossRef] [PubMed]
Cecil, J. , and Pirela-Cruz, M. , 2011, “An Information Model Based Framework for Virtual Micro Surgery,” Int. J. Virtual Reality, 10(2), pp. 17–31. https://hal-cstb.archives-ouvertes.fr/ENIB/hal-01530539
Chellali, A. , Dumas, C. , and Milleville-Pennel, I. , 2012, “Haptic Communication to Support Biopsy Procedures Learning in Virtual Environments,” Presence, 21(4), pp. 470–489. [CrossRef]
Delingette, H. , and Ayache, N. , 2005, “Hepatic Surgery Simulation,” Commun. ACM, 48(2), pp. 31–36. [CrossRef]
Drebin, R. A. , Carpenter, L. , and Hanrahan, P. , 1988, “Volume Rendering,” ACM SIGGRAPH Comput. Graph., 22(4), pp. 65–74. [CrossRef]
Courtecuisse, H. , Allard, J. , Kerfriden, P. , Bordas, S. P. A. , Cotin, S. , and Duriez, C. , 2014, “Real-Time Simulation of Contact and Cutting of Heterogeneous Soft-Tissues,” Med. Image Anal., 18(2), pp. 394–410. [CrossRef] [PubMed]
Buzink, S. N. , Goossens, R. H. , De Ridder, H. , and Jakimowicz, J. J. , 2010, “Training of Basic Laparoscopy Skills on SimSurgery SEP,” Minim. Invasive. Ther. Allied Technol., 19(1), pp. 35–41.
Schreuder, H. W. R. , Persson, J. E. U. , Wolswijk, R. G. H. , Ihse, I. , Schijven, M. P. , and Verheijen, R. H. M. , 2014, “Validation of a Novel Virtual Reality Simulator for Robotic Surgery,” Sci. World J., 2014, p. 507076.
Kneebone, R. , 2003, “Simulation in Surgical Training: Educational Issues and Practical Implications,” Med. Educ., 37(3), pp. 267–277. [CrossRef] [PubMed]
Tanoue, K. , Yasunaga, T. , Konishi, K. , Okazakia, K. , Ieiri, S. , Kawabe, Y. , Matsumoto, K. , Kakeji, Y. , and Hashizum, M. , 2005, “Effectiveness of Training for Endoscopic Surgery Using a Simulator With Virtual Reality: Randomized Study,” Int. Congr. Ser., 1281, pp. 515–520. [CrossRef]
Kleinert, R. , Heiermann, N. , Wahba, R. , Chang, D.-H. , A. H., Hölscher, A. H. , and Stippel, D. L. , 2015, “Design, Realization, and First Validation of an Immersive Web-Based Virtual Patient Simulator for Training Clinical Decisions in Surgery,” J. Surg. Educ., 72(6), pp. 1131–1138. [CrossRef] [PubMed]
Haverly, M. , Dupont, P. , and Triedman, J. , 2005, “Trajectory Optimization for Dynamic Needle Insertion,” IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain, Apr. 18–22, pp. 1646–1651.
Pellen, M. G. , Horgan, L. F. , Barton, J. R. , and Attwood, S. E. , 2009, “Construct Validity of the ProMIS Laparoscopic Simulator,” Surg. Endosc., 23(1), pp. 130–139. [CrossRef] [PubMed]
Abelson, J. S. , Silverman, E. P. A. , Banfelder, J. , Naides, A. , Costa, R. , and Dakin, G. , 2015, “Virtual Operating Room for Team Training in Surgery,” Am. J. Surg., 210(3), pp. 585–590. [CrossRef] [PubMed]
Basdogan, C. , Ho, C.-H. , and Srinivasan, M. A. , 2001, “Virtual Environments for Medical Training: Graphical and Haptic Simulations of Laparoscopic Common Bile Duct Exploration,” IEEE/ASME Trans. Mechatronics, 6(3), pp. 269–285. [CrossRef]
Miller, K. , Horton, A. , Joldes, G. R. , and Wittek, A. , 2012, “Beyond Finite Elements: A Comprehensive, Patient-Specific Neurosurgical Simulation Utilizing a Meshless Method,” J. Biomech., 45(15), pp. 2698–2701. [CrossRef] [PubMed]
Cheah, T. C. , Rathinam, A. K. , Shanmugam, S. A. , and Waran, V. , 2012, “Modeling the Interaction Between Navigation Probe and Deformable Brain Tissue Based on Finite Element Analysis: Preliminary Study,” IEEE EMBS International Conference on Biomedical Engineering and Sciences (IECBES), Langkawi, Malaysia, Dec. 17–19, pp. 519–524.
Dumenil, A. , Kaladji, A. , Castro, M. , Esneault, S. , Lucas, A. , Rochette, M. , Goksu, C. , and Haigron, P. , 2013, “Finite-Element-Based Matching of Pre- and Intraoperative Data for Image-Guided Endovascular Aneurysm Repair,” IEEE Trans. Biomed. Eng., 60(5), pp. 1353–1362. [CrossRef] [PubMed]
Markelj, P. , Tomazevic, D. , Likar, B. , and Pernus, F. , 2012, “A Review of 3D/2D Registration Methods for Image-Guided Interventions,” Med. Image Anal., 16(3), pp. 642–661. [CrossRef] [PubMed]
Lee, S.-L. , Lerotic, M. , Vitiello, V. , Giannarou, S. , Kwok, K.-W. , Visentini-Scarzanella, M. , and Yang, G.-Z. , 2010, “From Medical Images to Minimally Invasive Intervention: Computer Assistance for Robotic Surgery,” Comput. Med. Imaging Graph., 34(1), pp. 33–45. [CrossRef] [PubMed]
Horton, A. , Wittek, A. , and Miller , 2007, “Subject-Specific Biomechanical Simulation of Brain Indentation Using a Meshless Method,” Tenth International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Brisbane, Australia, Oct. 29–Nov. 2, pp. 541–548.
Tendela, L. , Navarro, L. , and Molimard, J. , 2015, “3D Full-Field Strain Measurements in Soft Tissues Using Digital Volume Correlation,” Sixth International Conference on Optical Measurement Techniques for Structures & Systems (OPTIMESS), Anvers, Belgium, Apr., Paper No. 23. https://hal.archives-ouvertes.fr/hal-01406510
Jirousek, O. , Jandejsek, I. , and Vavrık, D. , 2011, “Evaluation of Strain Field in Microstructures Using Micro-CT and Digital Volume Correlation,” 12th International Workshop on Radiation Imaging Detectors, Cambridge, UK, July 11–15, pp. 1–5. http://iopscience.iop.org/article/10.1088/1748-0221/6/01/C01039/pdf
Mosegaard, J. , and Sørensen, T. S. , 2006, “An Introduction to GPU Accelerated Surgical Simulation,” International Symposium on Biomedical Simulation (ISBMS), Zurich, Switzerland, July 10–11, pp. 93–104.
Taylor, Z. A. , Cheng, M. , and Ourselin, S. , 2008, “High-Speed Nonlinear Finite Element Analysis for Surgical Simulation Using Graphics Processing Units,” IEEE Trans. Med. Imaging, 27(5), pp. 650–663. [CrossRef] [PubMed]
Panchatcharam, M. , Sundar, S. , Vetrivel, V. , Klar, A. , and Tiwari, S. , 2013, “GPU Computing for Meshfree Particle Method,” Int. J. Numer. Anal. Model., 4(4), pp. 394–412. http://www.math.ualberta.ca/ijnamb/Volume-4-2013/No-4-13/2013-04-06.pdf
Wierzbicki, M. , Drangova, M. , Guiraudon, G. , and Peters, T. , 2004, “Validation of Dynamic Heart Models Obtained Using Non-Linear Registration for Virtual Reality Training, Planning, and Guidance of Minimally Invasive Cardiac Surgeries,” Med. Image Anal., 8(3), pp. 387–401. [CrossRef] [PubMed]
Krokos, M. , Podgorelec, D. , Clapworthy, G. J. , Liang, R. H. , Testi, D. , and Viceconti, M. , 2005, “Patient-Specific Muscle Models for Surgical Planning,” International Conference on Medical Information Visualisation – Biomedical Visualisation (MedVis 2005), London, July 5–7, pp. 3–8.
Li, M. , Miller, K. , Joldes, G. R. , Doyle, B. , Garlapati, R. R. , Kikinis, R. , and Wittek, A. , 2015, “Patient-Specific Biomechanical Model as Whole-Body CT Image Registration Tool,” Med. Image Anal., 22(1), pp. 22–34. [CrossRef] [PubMed]
Audette, M. A. , Delingette, H. , and Fuchs, A. , 2003, “A Procedure for Computing Patient-Specific Anatomical Models for Finite Element-Based Surgical Simulation,” Int. Congr. Ser., 1256, pp. 356–361. [CrossRef]
Boyer, G. , Molimard, J. , Tkaya, M. B. , Zahouani, H. , Pericoi, M. , and Avril, S. , 2013, “Assessment of the In-Plane Biomechanical Properties of Human Skin Using a Finite Element Model Updating Approach Combined With an Optical Full-Field Measurement on a New Tensile Device,” J. Mech. Behav. Biomed. Mater., 27, pp. 273–282. [CrossRef] [PubMed]
Wittek, A. , Grosland, N. M. , Joldes, G. R. , Magnotta, V. , and Miller, K. , 2016, “From Finite Element Meshes to Clouds of Points: A Review of Methods for Generation of Computational Biomechanics Models for Patient-Specific Applications,” Ann. Biomed. Eng., 44(1), pp. 3–15. [CrossRef] [PubMed]
Lam, C. K. , Sundaraj, K. , and Sulaiman, M. N. , 2012, “Virtual Simulation of Eyeball and Extraocular Muscle Reaction During Cataract Surgery,” Procedia Eng., 41, pp. 150–155. [CrossRef]
Hanna, L. , 2010, “Simulated Surgery: The Virtual Reality of Surgical Training,” Surg. J., 28(9), pp. 463–468.
Berkley, J. , Turkiyyah, G. , Berg, D. , Ganter, M. , and Weghorst, S. , 2004, “Real-Time Finite Element Modeling for Surgery Simulation: An Application to Virtual Suturing,” IEEE Trans. Visualization Comput. Graph., 10(3), pp. 314–325. [CrossRef]
Wang, P. , Becker, A. A. , Jones, I. A. , Glover, A. T. , Benford, S. D. , Greenhalgh, C. M. , and Vloeberghs, M. , 2007, “Virtual Reality Simulation of Surgery With Haptic Feedback Based on the Boundary Element Method,” Comput. Struct., 85(7–8), pp. 331–339. [CrossRef]
Ho, C.-H. , Basdogan, C. , and Srinivasan, M. A. , 2000, “Ray Based Haptic Rendering: Force and Torque Interactions Between a Line Probe and 3D Objects in Virtual Environment,” Int. J. Rob. Res., 19(7), pp. 668–683. [CrossRef]
Ho, S. , Sarma, S. , and Adachi, Y. , 2001, “Real-Time Interference Analysis Between a Tool and an Environment,” Comput.-Aided Des., 33(13), pp. 935–947. [CrossRef]
González-Estrada, O. A. , Rodenas, J. J. , Bordas, S. P. A. , Nadal, E. , Kerfriden, P. , and Fuenmayor, F. J. , 2015, “Locally Equilibrated Stress Recovery for Goal Oriented Error Estimation in the Extended Finite Element Method,” Comput. Struct., 152, pp. 1–10. [CrossRef]
Bordas, S. , and Duflot, M. , 2007, “Derivative Recovery and a Posteriori Error Estimate for Extended Finite Elements,” Comput. Methods Appl. Mech. Eng., 196(35–36), pp. 3381–3399. [CrossRef]
Yu-jin, F. , Kui, Y. , Qing-xiu, D. , and Wei-guo, S. , 2005, “Development of a Virtual Surgery System With a Virtual Scalpel,” IEEE International Conference on Information Acquisition (ICIA), Hong Kong, China, June 27–July 3, pp. 253–257.
Hasegawa, S. , Funayama, H. , and Wei, D. , 2007, “A Virtual Reality Simulating Catheter Manipulations,” Int. J. Bioelectromagn., 9(2), pp. 125–126. http://www.ijbem.org/volume9/number2/57.pdf
Altomonte, M. , Zerbato, D. , Botturi, D. , and Fiorini, P. , 2008, “Simulation of Deformable Environment With Haptic Feedback on GPU,” IEEE International Conference on Intelligent Robots and Systems (IROS), Nice, France, Sept. 22–26, pp. 3959–3964.
Ehmann, K. , and Malukhin, K. , 2012, “A Generalized Analytical Model of the Cutting Angles of a Biopsy Needle Tip,” ASME J. Manuf. Sci. Eng., 134(6), p. 061001. [CrossRef]
Datla, N. V. , Konh, B. , Honarvar, M. , Podder, T. K. , Dicker, A. P. , Yu, Y. , and Hutapea, P. , 2014, “A Model to Predict Deflection of Bevel-Tipped Active Needle Advancing in Soft Tissue,” Med. Eng. Phys., 36(3), pp. 285–293. [CrossRef] [PubMed]
Wu, J. , Westermann, R. , and Dick, C. , 2015, “A Survey of Physically Based Simulation of Cuts in Deformable Bodies,” Comput. Graph. Forum, 34(6), pp. 161–187. [CrossRef]
Jalocha, D. , Constantinescu, A. , and Neviere, R. , 2015, “Revisiting the Identification of Generalized Maxwell Models From Experimental Results,” Int. J. Solids Struct., 67–68, pp. 169–181. [CrossRef]
Kim, B. , Lee, S. B. , Lee, J. , Cho, S. , Park, H. , Yeom, S. , and Park, S. H. , 2012, “A Comparison Among Neo-Hookean Model, Mooney-Rivlin Model, and Ogden Model for Chloroprene Rubber,” Int. J. Precis. Eng. Manuf., 13(5), pp. 759–764. [CrossRef]
Luca, A. D. , Mattone, R. , and Oriolo, G. , 1998, “Steering a Class of Redundant Mechanisms Through End-Effector Generalized Forces,” IEEE Trans. Rob. Autom., 14(2), pp. 329–335. [CrossRef]
van den Berg, J. , Patil, S. , Alterovitz, R. , Abbeel, P. , and Goldberg, K. , 2010, “LQG-Based Planning, Sensing, and Control of Steerable Needles,” Algorithmic Foundations of Robotics IX, Springer, Berlin, pp. 373–389. [CrossRef]
Cowin, S. C. , and Doty, S. B. , 2007, Tissue Mechanics, Springer Science + Business Media, LLC, New York, p. 682. [CrossRef]
Chen, H. , Zhao, X. , Lu, X. , and Kassab, G. , 2013, “Non-Linear Micromechanics of Soft Tissues,” Int. J. Nonlinear Mech., 56, pp. 79–85. [CrossRef]
Anssari-Benam, A. , Bucchi, A. , and Bader, D. L. , 2015, “Unified Viscoelasticity: Applying Discrete Element Models to Soft Tissues With Low Characteristic Times,” J. Biomech., 48(12), pp. 3128–3134. [CrossRef] [PubMed]
Muliana, A. , Rajagopal, K. R. , and Tscharnuter D. , 2015, “A Nonlinear Integral Model for Describing Responses of Viscoelastic Solids,” Int. J. Solids Struct., 58, pp. 146–156. [CrossRef]
Mihai, L. A. , Chin, L. , Janmey, P. A. , and Coriely, A. , 2015, “A Comparison of Hyperelastic Constitutive Models Applicable to Brain and Fat Tissues,” J. R. Soc. Interface, 12(110), pp. 1–12. [CrossRef]
Horgan, C. O. , and Schwartz, J. G. , 2005, “Constitutive Modeling and the Trousers Test for Fracture of Rubber-Like Materials,” J. Mech. Phys. Solids, 53(3), pp. 454–564. [CrossRef]
De Borst, R. , Cristfield, M. A. , Remmers, J. J. C. , and Verhoosel, C. V. , 2012, Non-Linear Finite Element Analysis of Solids and Structures, Wiley, Chichester, UK. [CrossRef]
Marques, S. P. C. , and Creus, G. J. , 2012, Computational Viscoelasticity, Springer, Berlin. [CrossRef]
Martins, P. A. L. S. , Joerge, N. R. M. , and Ferreira, A. J. M. , 2006, “A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues,” Strain, 42(3), pp. 135–147. [CrossRef]
Hoss, L. , and Marzcak, R. J. , 2010, “A New Constitutive Model for Rubber-like Materials,” Mec. Computacional, XXIX, pp. 2759–2773. http://www.cimec.org.ar/ojs/index.php/mc/article/viewFile/3194/3121
Takács, Á. , Kovács, L. , and Rudas, I. J. , 2015, “Models for Force Control in Telesurgical Robot Systems,” Acta Polytech. Hung., 12(8), pp. 95–114. https://www.uni-obuda.hu/journal/Takacs_Kovacs_Rudas_Precup_Haidegger_64.pdf
Guo, J. , Li, P. , Yan, H. , and Ren, H. , 2016, “Viscoelastic Model Based Bilateral Teleoperation for Robotic-Assisted Tele-Palpation,” Assem. Autom., 37(3), pp. 322–334.
Kiss, M. Z. , Varghese, T. , and Hall, J. T. , 2004, “Viscoelastic Characterization of In Vivo Canine Tissue,” Phys. Med. Biol., 49(18), pp. 4207–4218. [CrossRef] [PubMed]
Caputo, M. , Carcione, J. M. , and Cavalli, F. , 2011, “Wave Simulation in Biologic Media Based on the Kelvin-Voigt Fractional-Derivative Stress-Strain Relation,” Ultrasound Med. Biol., 37(6), pp. 996–1004. [CrossRef] [PubMed]
Clayton, H. E. , Garbow, J. R. , and Bayly, P. V. , 2011, “Frequency-Dependent Viscoelastic Parameters of Mouse Brain Tissue Estimated by MR Elastography,” Phys. Med. Biol., 56(8), pp. 2391–2406. [CrossRef] [PubMed]
Malukhin, K. , and Ehmann, E. , 2015, “Model of a NiTi Shape Memory Alloy Actuator,” J. Intell. Mater. Syst. Struct., 26(4), pp. 386–399. [CrossRef]
Tabatabaei, S. S. , Talebi, H. A. , and Tavakoli, M. , 2017, “Non-Integer Variable Order Dynamic Modeling and Identification of Soft Tissue Deformation,” American Control Conference (ACC), Seattle, WA, May 24–26, pp. 819–824.
Destrade, M. , 2002, “Small-Amplitude Inhomogeneous Wave in a Deformed Mooney-Rivlin Material,” Q. J. Mech. Appl. Math., 55(1), pp. 109–126. [CrossRef]
Gent, A. N. , 1996, “A New Constitutive Relation for Rubber,” Rubber,” Chem. Technol., 69(1), pp. 59–61.
Li, K. , Zhao, H. , Liu, W. , and Yin, Z. , 2015, “Material Properties and Constitutive Modeling of Infant Porcine Cerebellum Tissue in Tension at High Strain Rate,” PLoS One, 10(4), pp. 1–12.
Asaro, R. J. , and Lubarda, V. A. , 2011, Mechanics of Solids and Materials, Cambridge University Press, New York.
Destrade, M. , Gilchrist, M. D. , and Ogden, R. W. , 2010, “Third- and Fourth Order Elasticity of Biological Soft Tissues,” J. Acoust. Soc. Am., 127(4), pp. 2103–2109. [CrossRef] [PubMed]
Yeoh, O. H. , and Fleming, P. D. , 1997, “A New Attempt to Reconcile the Statistical and Phenomenological Theories of Rubber Elasticity,” J. Polym. Sci. Part B: Polym. Phys., 35(12), pp. 1919–1931. [CrossRef]
Nasseri, S. , Bilston, L. E. , and Phan-Thien, N. , 2002, “Viscoelastic Properties of Pig Kidney in Shear, Experimental Results and Modelling,” Rheol. Acta, 41(1–2), pp. 180–192. [CrossRef]
Zhai, J. , Karuppasamy, K. , Zvavanjanja, R. , Fisher, M. , Fisher, A. C. , Gould, D. , and How, T. , 2013, “A Sensor for Needle Puncture Force Measurement During Interventional Radiological Procedures,” Med. Eng. Phys., 35(3), pp. 350–356. [CrossRef] [PubMed]
Kobayashi, Y. , Hamano, R. , Watanabe, H. , Hong, J. , Toyoda, K. , Hashizume, M. , and Fujie, M. G. , 2013, “Use of Puncture Force Measurement to Investigate the Conditions of Blood Vessel Needle Insertion,” Med. Eng. Phys., 35(5), pp. 684–689. [CrossRef] [PubMed]
Azar, T. , and Hayward, V. , 2008, “Estimation of the Fracture Toughness of Soft Tissue From Needle Insertion,” International Symposium on Biomedical Simulation (ISBM), London, July 7–8, pp. 166–175.
Misra, S. , Reed, K. B. , Schafer, B. W. , Ramesh, K. T. , and Okamura, A. M. , 2009, “Observations and Models for Needle-Tissue Interactions,” IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12–17, pp. 2687–2692.
Sun, W. , and Alterovitz, R. , 2014, “Motion Planning Under Uncertainty for Medical Needle Steering Using Optimization in Belief Space,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, Sept. 14–18, pp. 1775–1781.
Sfakiotakis, M. , Pateromichelakis, N. , and Tsakiris, D. , 2014, “Vibration-Induced Frictional Reduction in Miniature Intracorporeal Robots,” IEEE Trans. Rob., 30(5), pp. 1210–1221. [CrossRef]
Bloch, A. M. , Marsden, J. E. , and Zenkov, D. V. , 2005, “Nonholonomic Dynamics,” Not. AMS, 52(3), pp. 320 –329. http://www.ams.org/notices/200503/fea-bloch.pdf
Duriez, C. , Guebert, C. , Marchal, M. , Cotin, S. , and Grisoni, L. , 2009, “Interactive Simulation of Flexible Needle Insertions Based on Constraint Models,” Medical Image Computing and Computer-Assisted Intervention (MICCAI), London, Sept. 20–24, pp. 291–299.
Meltsner, M. A. , Ferrier, N. J. , and Thomadsen, B. R. , 2007, “Observations on Rotating Needle Insertions Using a Brachytherapy Robot,” Phys. Med. Biol., 52(19), pp. 6027–6037. [CrossRef] [PubMed]
Park, W. , Kim, J. , Zhou, Y. , Cowan, N. , Okamura, A. , and Chirikjian, G. , 2005, “Diffusion-Based Motion Planning for a Nonholonomic Flexible Needle Model,” IEEE International. Conference on Robotics and Automation (ICRA), Barcelona, Spain, Apr. 18–22, pp. 4600–4605.
Zhang, E. , Antoni, J. , and Feissel, P. , 2012, “Bayesian Force Reconstruction With an Uncertain Model,” J. Sound Vib., 331(4), pp. 798–814. [CrossRef]
Madireddy, S. , Sista, B. , and Vemaganti, K. , 2015, “A Bayesian Approach to Selecting Hyperelastic Constitutive Models of Soft Tissue,” Comput. Methods Appl. Mech. Eng., 291, pp. 102–122. [CrossRef]
Cao, D. , Sun, C. , and Yang, M. , 2015, “Dynamics for a Stochastic Reaction–Diffusion Equation With Additive Noise,” J. Differ. Equations, 259(3), pp. 838–872. [CrossRef]
Xie, H. , and Miyata, K. , 2013, “Stochastic Modeling of Immersed Rigid-Body Dynamics,” SIGGRAPH Asia 2013 Technical Briefs, Hong Kong, Nov. 19–22, Paper No. 12.
Bougioukou, A. T. , Leros, A. P. , and Papkomstantinou, V. , 2008, “Modeling of Non-Stationary Ground Motion Using the Mean Reverting Stochastic Process,” Appl. Math. Model., 32(9), pp. 1912–1932. [CrossRef]
Atkins, A. G. , Xu, X. , and Jeronimidis, G. , 2004, “Cutting by ‘Pressing and Slicing’ of Thin Floppy Slices of Materials Illustrated by Experiments on Cheddar Cheese and Salami,” J. Mater. Sci., 39(8), pp. 2761–2766. [CrossRef]
Sederberg, T. W. , and Parry, S. R. , 1986, “Free-From Deformation of Solid Geometric Methods,” 13th Annual Conference on Computer Graphics and Interactive Techniques, Dallas, TX, Aug. 18–22, pp. 151–160.
Gregory, A. D. , Ehmann, S. A. , and Lin, M. C. , 2000, “inTouch: Interactive Multiresolution Modeling and 3D Painting With a Haptic Interface,” IEEE Virtual Reality, New Brunswick, NJ, Mar. 18–22, pp. 45–54.
Casale, M. S. , and Stanton, E. L. , 1985, “An Overview of Analytic Solid Modeling,” IEEE Comput. Graph. Appl., 5(2), pp. 45–56. [CrossRef]
Stanton, E. L. , Crain, L. M. , and Neu, T. F. , 1977, “A Parametric Cubic Modeling System for General Solids of Composites Material,” Int. J. Numer. Methods Eng., 11(4), pp. 653–670. [CrossRef]
Chen, D. , Levin, D. I. W. , Sueda, S. , and Matusik, W. , 2015, “Data-Driven Finite Elements for Geometry and Material Design,” ACM Trans. Graph., 34(4), pp. 1–10.
Seiler, M. , Spillmann, J. , and Harders, M. , 2014, “Data-Driven Simulation of Detailed Surface Deformations for Surgery Training Simulators,” IEEE Trans. Visualization Comput. Graph., 20(10), pp. 1379–1391. [CrossRef]
Banihani, S. , Rabczuk, T. , and Almomani, T. , 2013, “POD for Real-Time Simulation of Hyperelastic Soft Biological Tissue Using the Point Collocation Method of Finite Spheres,” Math. Probl. Eng., 2013, pp. 1–9. [CrossRef]
Niroomandi, S. , Alfaro, I. , Gonzalez, D. , Cueto, E. , and Chinesta, F. , 2013, “Model Order Reduction in Hyperelasticity: A Proper Generalized Decomposition Approach,” Int. J. Numer. Methods Eng., 96(3), pp. 129–149.
Quesada, C. , González, D. , Alfaro, I. , Cueto, E. , and Chinesta, F. , 2016, “Computational Vademecums for Real-Time Simulation of Surgical Cutting in Haptic Environments,” Int. J. Numer. Methods Eng., 108(10), pp. 1230–1247. [CrossRef]
Bianchi, G. , Harders, M. , and Szekely, G. , 2003, “Mesh Topology Identification for Mass-Spring Models,” Medical Image Computing and Computer-Assisted Intervention (MICCAI), Montreal, QC, Canada, Nov. 15–18, pp. 50–58.
Marinkovic, D. , Zehn, M. , and Marinkovic, Z. , 2012, “Finite Element Formulations for Effective Computations of Geometrically Nonlinear Deformations,” Adv. Eng. Software, 50, pp. 3–11. [CrossRef]
Gelder, A. V. , 1998, “Approximate Simulation of Elastic Membranes by Triangulated Spring Meshes,” J. Graph. Tools, 3(2), pp. 21–42. [CrossRef]
Senatore, G. , and Piker, D. , 2015, “Interactive Real-Time Physics an Intuitive Approach to Form-Finding and Structural Analysis for Design and Education,” Comput.-Aided Des., 61, pp. 32–41. [CrossRef]
Schoch, N. , Suwelack, S. , Speidel, S. , Dillmann, R. , and Heuveline, V. , 2013, “Simulation of Surgical Cutting in Soft Tissue Using Extended Finite Element Method (X-FEM),” Preprint Series Eng. Math. Comput. Lab, 4, pp. 1–36.
Tagawa, K. , Oishi, T. , and Tanaka, H. T. , 2013, “Adaptive and Embedded Deformation Model: An Approach to Haptic Interaction With Complex Inhomogeneous Elastic Objects,” IEEE World Haptics Conference (WHC), Daejeon, South Korea, Apr. 14–17, pp. 169–174.
Song, C. , Zhang, H. , Wang, X. , Han, J. , and Wang, H. , 2014, “Fast Corotational Simulation for Example-Driven Deformation,” Comput. Graph., 40, pp. 49–57. [CrossRef]
Belytschko, T. , Lu, Y. Y. , and Gu, L. , 1994, “Element-Free Galerkin Methods,” Int. J. Numer. Methods Eng., 37(2), pp. 229–256. [CrossRef]
Duan, Q. , Gao, X. , Wang, B. , Li, X. , Zhang, H. , Belytschko, T. , and Shao, Y. , 2014, “Consistent Element-Free Galerkin Method,” Int. J. Numer. Methods Eng., 99(2), pp. 79–101. [CrossRef]
Desbrun, M. , Schroder, P. , and Barr, A. , 1999, “Interactive Animation of Structured Deformable Objects,” Conference on Graphics Interface ‘99, Kingston, ON, Canada, June 2–4, pp. 1–8. http://m.multires.caltech.edu/pubs/GI99.pdf
Hsiao, K. M. , Lin, J. Y. , and Lin, W. Y. , 1999, “A Consistent Co-Rotational Finite Element Formulation for Geometrically Nonlinear Dynamic Analysis of 3-D Beams,” Comput. Methods Appl. Mech. Eng., 169(1–2), pp. 1–18.
Belytschko, T. , Zi, G. , Xu, J. , and Chessa, J. , 2003, “The Extended Finite Element Method for Arbitrary Discontinuities,” Computational Mechanics Theory and Practice, Barcelona, Spain.
Agathos, K. , Chatzi, E. , Bordas, S. P. A. , and Talslidis, D. , 2015, “Extended Finite Element Methods With Global Enrichment,” Int. J. Numer. Methods Eng., 105(9), pp. 1–81.
Bordas, S. P. A. , Rabczuk, T. , Hung, N.-X. , Nguyen, V. P. , Natarajan, S. , Bog, T. , Quan, D. M. , and Hiep, N. V. , 2010, “Strain Smoothing in FEM and XFEM,” Comput. Struct., 88(23–24), pp. 1419–1443. [CrossRef]
Vigneron, L. M. , Duflot, M. P. , Robe, P. A. , Warfield, S. K. , and Verly, J. G. , 2009, “2D XFEM-Based Modeling of Retraction and Successive Resections for Pre-Operative Image Update,” Comput. Aided Surg., 14(1–3), pp. 1–35. [CrossRef] [PubMed]
Cheng, Q. , Liu, P. X. , Lai, P. , Zou, Y. , Li, C. , and Hu, L. , 2017, “Modelling of Soft Tissue Cutting in Virtual Surgery Simulation: A Literature Review,” Int. J. Rob. Autom., 32(3).
Vigneron, L. M. , Verly, J. G. , and Warfield, S. K. , 2004, “Modeling Surgical Cuts, Retractions, and Resections Via Extended Finite Element Method,” Medical Image Computing and Computer-Assisted Intervention (MICCAI), Saint-Malo, France, Sept. 26–29, pp. 311–318.
Remij, E. W. , Remmers, J. J. C. , Huyghe, J. M. , and Smeulders, D. M. J. , 2017, “An Investigation of the Step-Wise Propagation of a Mode-II Fracture in a Poroelastic Medium,” Mech. Res. Commun., 80, pp. 10–15. [CrossRef]
Koschier, D. , Bender, J. , and Thuerey, N. , 2017, “Robust eXtended Finite Elements for Complex Cutting of Deformables,” ACM Trans. Graph., 36(4), p. 55.
Pandolfi, A. , and Ortiz, M. , 2012, “An Eigenerosion Approach to Brittle Fracture,” Int. J. Numer. Methods Eng., 92(8), pp. 694–714. [CrossRef]
Stochino, F. , Qinami, A. , and Kaliske, M. , 2017, “Eigenerosion for Static and Dynamic Brittle Fracture,” Eng. Fract. Mech., 182, pp. 537–551. [CrossRef]
Miehe, C. , Welschinger, F. , and Hofacke, R. M. , 2010, “Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field Fe Implementations,” Int. J. Numer. Methods Eng., 83(10), pp. 1273–1311. [CrossRef]
Rabczuk, T. , and Ren, H. , 2016, “A Peridynamics Formulation for Quasi-Static Fracture and Contact in Rock,” Eng. Geol., 225, pp. 42–48. [CrossRef]
Zeng, W. , Johnson, B. , Smith, R. , Rubin, N. , Reagor, N. , Ryan, C. , and Rigetti, C. , 2017, “First Quantum Computers Need Smart Software,” Nature, 549(7671), pp. 149–151. [CrossRef] [PubMed]
Jin, X. , Joldes, G. R. , Miller, K. , Yang, K. H. , and Wittek, A. , 2014, “Meshless Algorithm for Soft Tissue Cutting in Surgical Simulation,” Comput. Methods Biomech. Biomed. Eng., 17(7), pp. 800–811. [CrossRef]
Horton, A. , Wittek, A. , and Miller, K. , 2006, “Towards Meshless Methods for Surgical Simulation,” Computational Biomechanics for Medicine Workshop, Copenhagen, Denmark, Oct. 1, pp. 34–42. https://www.researchgate.net/publication/228851179_Towards_meshless_methods_for_surgical_simulation
Lim, Y.-J. , and De, S. , 2007, “Real Time Simulation of Nonlinear Tissue Response in Virtual Surgery Using the Point Collocation-Based Method of Finite Spheres,” Comput. Methods Appl. Mech. Eng., 196(31–32), pp. 3011–3024. [CrossRef]
Lim, Y.-J. , Jin, W. , and De, S. , 2007, “On Some Recent Advances in Multimodal Surgery Simulation: Multimodel Surgery Simulation a Hybrid Approach to Surgical Cutting and the Use of Video Images for Enhanced Realism,” Presence, 16(6), pp. 563–583. [CrossRef]
Zou, Y. , and Liu, P. X. , 2017, “A High-Resolution Model for Soft Tissue Deformation Based on Point Primitives,” Comput. Methods Programs Biomed., 148, pp. 113–121. [CrossRef] [PubMed]
Kim, J. , Choi, C. , De, S. , and Srinivasan, M. A. , 2007, “Virtual Surgery Simulation for Medical Training Using Multi-Resolution Organ Models,” Int. J. Med. Rob. Comput. Assisted Surg., 3(2), pp. 149–158. [CrossRef]
Hung, K. W. C. , Nakao, M. , Yoshimura, K. , and Minato, K. , 2011, “Background-Incorporated Volumetric Model for Patient-Specific Surgical Simulation: A Segmentation-Free, Modeling-Free Framework,” Int. J. Comput. Assisted Radiol. Surg., 6(1), pp. 35–45. [CrossRef]
Nakao, M. , Oda, Y. , Taura, K. , and Minato, K. , 2014, “Direct Volume Manipulation for Visualizing Intraoperative Liver Resection Process,” Comput. Methods Programs Biomed., 113(3), pp. 725–735. [CrossRef] [PubMed]
Pan, J. J. , Chang, J. , Yang, X. , Liang, H. , Zhang, J. J. , Qureshi, T. , Howell, R. , and Hickish, T. , 2015, “Virtual Reality Training and Assessment in Laparoscopic Rectum Surgery,” Int. J. Med. Rob. Comput. Assisted Surg., 11(2), pp. 194–209. [CrossRef]
Cotin, S. , Delingette, H. , and Ayache, N. , 1998, “Efficient Linear Elastic Models of Soft Tissues for Real-Time Surgery Simulation,” Rapport De Recherche, Institut National De Recherche En Informatique Et En Automatique, #inria-00073174, INRIA, France, pp. 1–30.
Cakir, O. , and Yazici, R. , 2009, “Real-Time Cutting Simulation Based on Stiffness-Warped FEM,” 24th International Symposium on Computer and Information Sciences (ISCIS), Guzelyurt, Cyprus, Sept. 14–16, pp. 721–724.
Mor, A. B. , and Kanade, T. , 2000, “Modifying Soft Tissue Models: Progressive Cutting With Minimal New Element Creation,” Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Pittsburgh, PA, Oct. 11–14, pp. 598–607.
Wang, P. , Becker, A. A. , Jones, I. A. , Glover, A. T. , Benford, S. D. , Greenhalgh, C. M. , and Vloeberghs, M. , 2006, “A Virtual Reality Surgery Simulation of Cutting and Retraction in Neurosurgery With Force-Feedback,” Comput. Methods Programs Biomed., 84(1), pp. 11–18. [CrossRef] [PubMed]
Lekadir, K. , Noble, C. , Hazrati-Marangalou, J. , Hoogendoorn, C. , van Rietbergen, B. , Taylor, Z. A. , and Frangi, A. F. , 2016, “Patient-Specific Biomechanical Modeling of Bone Strength Using Statistically-Derived Fabric Tensors,” Ann. Biomed. Eng., 44(1), pp. 234–246. [CrossRef] [PubMed]
Alba, X. , Pereanez, M. , Hoogendoorn, C. , Swift, A. J. , Wild, J. M. , Frangi, A. F. , and Lekadir, K. , 2016, “An Algorithm for the Segmentation of Highly Abnormal Hearts Using a Generic Statistical Shape Model,” IEEE Trans. Med. Imaging, 35(3), pp. 845–859. [CrossRef] [PubMed]
Sarrami-Foroushani, A. , Lassila, T. , Gooya, A. , Geers, A. J. , and Frangi, A. F. , 2016, “Uncertainty Quantification of Wall Shear Stress in Intracranial Aneurysms Using a Data-Driven Statistical Model of Systemic Blood Flow Variability,” J. Biomech., 49(16), pp. 3815–382. [CrossRef] [PubMed]
Lekadir, K. , Lange, M. , Zimmer, V. , Hoogendoorn, C. , and Frangi, A. F. , 2016, “Statistically-Driven 3D Fiber Reconstruction and Denoising From Multi-Slice Cardiac DTI Using a Markov Random Field Model,” Med. Image Anal., 27, pp. 105–116. [CrossRef] [PubMed]
Chen, K. R. , and Shih, A. J. , 2013, “Multi-Modality Gellan Gum-Based Tissue-Mimicking Phantom With Targeted Mechanical, Electrical, and Thermal Properties,” Phys. Med. Biol., 58(16), pp. 5511–5525. [CrossRef] [PubMed]
Li, W. , Belmont, B. , and Shih, A. J. , 2015, “Design and Manufacture of Polyvinyl Chloride (PVC) Tissue Mimicking Material for Needle Insertion,” Procedia Manuf., 1, pp. 866–878. [CrossRef]
Qin, J. , Choi, K.-S. , Pang, W.-M. , Yi, Z. , and Heng, P. A. , 2010, “Collaborative Virtual Surgery: Techniques, Applications and Challenges,” Int. J. Virtual Reality, 9(3), pp. 1–7. http://www.ijvr.org/web/search/singleArticle/34


Grahic Jump Location
Fig. 1

Classification flowchart of VR simulators

Grahic Jump Location
Fig. 2

A sample flowchart for haptic force perception skill surgical training

Grahic Jump Location
Fig. 3

Tool/tissue system components

Grahic Jump Location
Fig. 4

Real-time computing methods



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In