0
Research Papers

The Uncertainty of Cardiovascular Disease Risk Calculation—What is the Best Risk Model for the Individual?

[+] Author and Article Information
Ronald S. LaFleur

Mem. ASME
Department of Mechanical and
Aeronautical Engineering,
Clarkson University,
Box 5725,
Potsdam, NY 13699
e-mail: rlafleur@clarkson.edu

Laura S. Goshko

Department of Physician Assistant,
Seton Hall University,
400 South Orange Avenue,
South Orange, NJ 07079
e-mail: laura.goshko@shu.edu

Manuscript received October 26, 2017; final manuscript received January 21, 2018; published online February 28, 2018. Assoc. Editor: Stavroula Balabani.

ASME J of Medical Diagnostics 1(2), 021005 (Feb 28, 2018) (11 pages) Paper No: JESMDT-17-2049; doi: 10.1115/1.4039103 History: Received October 26, 2017; Revised January 21, 2018

Cardiovascular disease (CVD) continues to be a leading cause of death. Accordingly, risk models attempt to predict an individual's probability of developing the disease. Risk models are incorporated into calculators to determine the risk for a number of clinical conditions, including the ten-year risk of developing CVD. There is significant variability in the published models in terms of how the clinical measurements are converted to risk factors as well as the specific population used to determine b-weights of these risk factors. Adding to model variability is the fact that numbers are an imperfect representation of a person's health status. Acknowledgment of uncertainty must be addressed for reliable clinical decision-making. This paper analyzes 35 published risk calculators and then generalizes them into one “Super Risk formula” to form a common basis for uncertainty calculations to determine the best risk model to use for an individual. Special error arithmetic, the duals method, is used to faithfully propagate error from model parameters, population averages and patient-specific clinical measures to one risk number and its relative uncertainty. A set of sample patients show that the “best model” is specific to the individual and no one model is appropriate for every patient.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Topics: Errors , Uncertainty , Risk
Your Session has timed out. Please sign back in to continue.

References

Mozaffarian, D. , Benjamin, E. J. , Go, A. S. , Arnett, D. K. , Blaha, M. J. , Cushman, M. , de Ferranti, S. , Després, J.-P. , Fullerton, H. J. , Howard, V. J. , Huffman, M. D. , Judd, S. E. , Kissela, B. M. , Lackland, D. T. , Lichtman, J. H. , Lisabeth, L. D. , Liu, S. , Mackey, R. H. , Matchar, D. B. , McGuire, D. K. , Mohler, E. R. , Moy, C. S. , Muntner, P. , Mussolino, M. E. , Nasir, K. , Neumar, R. W. , Nichol, G. , Palaniappan, L. , Pandey, D. K. , Reeves, M. J. , Rodriguez, C. J. , Sorlie, P. D. , Stein, J. , Towfighi, A. , Turan, T. N. , Virani, S. S. , Willey, J. Z. , Woo, D. , Yeh, R. W. , and Turner, M. B. , 2015, “ AHA Statistical Update, Heart Disease and Stroke Statistics—2015 Update, a Report From the American Heart Association,” Circulation, 131(4), pp. 434–441. [CrossRef]
Dawber, T. , Meadors, G. , and Moore, F. , 1951, “ Epidemiological Approaches to Heart Disease: The Framingham Study,” Am. J. Public Health, 41(3), pp. 279–286. [CrossRef]
Mahmooda, S. , Levy, D. , Vasan, R. , and Wang, T. , 2014, “ The Framingham Heart Study and the Epidemiology of Cardiovascular Diseases: A Historical Perspective,” Lancet, 383(9921), pp. 999–1008. [CrossRef] [PubMed]
Damen, J. , Hooft, L. , Schuit, E. , Debray, T. , Collins, G. , Tzoulaki, I. , Lassale, C. , Siontis, G. , Chiocchia, V. , Roberts, C. , Schulussel, M. , Gerry, S. , Black, J. , Heus, P. , van der Schouw, Y. , Peelen, L. , and Moons, K. , 2016, “ Prediction Models for Cardiovascular Disease Risk in the General Population: Systematic Review,” BMJ, 353, pp. 1–11.
Goff, D. , Lloyd-Jones, D. , Bennett, G. , Coady, S. , D'Agostino, R. , Gibbons, R. , Greenland, P. , Lackland, D. , Levy, D. , O'Donnell, C. , Robinson, J. , Schwartz, J. , Shero, S. , Smith, S. , Sorlie, P. , Stone, N. , and Wilson, P. , 2014, “ 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” Circulation, 129, pp. S49–S73.
Hippisley-Cox, J. , Coupland, C. , Vinogradova, Y. , Robson, J. , Minhas, R. , Sheikh, A. , and Brindle, P. , 2008, “ Predicting Cardiovascular Risk in England and Wales: prospective Derivation and Validation of QRISK2,” BMJ, 336(7659), pp. 1475–1482.
D'Agostino, R. , Vasan, R. , Pencina, M. , Wolf, P. , Cobain, M. , Massaro, J. , and Kannel, W. , 2008, “ General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study,” Circulation, 117(6), pp. 743–753. [CrossRef] [PubMed]
Ridker, P. , Buring, J. , Rifai, N. , and Cook, N. , 2007, “ Development and Validation of Improved Algorithms for the Assessment of Global Cardiovascular Risk in Women: The Reynolds Risk Score,” JAMA, 297(6), pp. 611–619. [CrossRef] [PubMed]
Lee, E. , Howard, B. , Wang, W. , Welty, T. , Galloway, J. , Best, L. , Fabsitz, R. , Zhang, Y. , Yeh, J. , and Devereux, R. , 2006, “ Prediction of Coronary Heart Disease in a Population With High Prevalence of Diabetes and Albuminuria: The Strong Heart Study,” Circulation, 113(25), pp. 2897–2890.
Folsom, A. , Chambless, L. , Duncan, B. , Gilbert, A. , and Pankow, J. , 2003, “ Prediction of Coronary Heart Disease in Middle-Aged Adults With Diabetes,” Diabetes Care, 26(10), pp. 2777–2784. [CrossRef] [PubMed]
Wilson, P. , D'Agostino, R. , Levy, D. , Belanger, A. , Silbershatz, H. , and Kannel, W. , 1998, “ Prediction of Coronary Heart Disease Using Risk Factor Categories,” Circulation, 97(18), pp. 1837–1847. [CrossRef] [PubMed]
Assmann, G. , Cullen, P. , and Schulte, H. , 2002, “ Simple Scoring Scheme for Calculating the Risk of Acute Coronary Events Based on the 10-Year Follow-Up of the Prospective Cardiovascular Münster (PROCAM) Study,” Circulation, 105(3), pp. 310–315. [CrossRef] [PubMed]
Ridker, P. , Paynter, N. , Rifai, N. , Gaziano, J. , and Cook, N. , 2008, “ C-Reactive Protein and Parental History Improve Global Cardiovascular Risk Prediction: The Reynolds Risk Score for Men,” Circulation, 118(22), pp. 2243–2251. [CrossRef] [PubMed]
Stevens, R. , Kothari, V. , Adler, A. , Stratton, I. , and Holman, R. , 2001, “ The UKPDS Risk Engine: A Model for the Risk of Coronary Heart Disease in Type II Diabetes (UKPDS 56),” Clin. Sci., 101(6), pp. 671–679. [CrossRef] [PubMed]
Cullen, P. , Schulte, H. , and Assmann, G. , 1997, “ The Münster Heart Study (PROCAM) Total Mortality in Middle-Aged Men is Increased at Low Total and LDL Cholesterol Concentrations in Smokers but Not in Nonsmokers,” Circulation, 96(7), pp. 2128–2136. [CrossRef] [PubMed]
Hippisley-Cox, S. D., 2013, “ QRISK®2-2014 Online C-Codes,” ClinRisk Ltd., Leeds, UK, accessed Feb. 5, 2018, http://svn.clinrisk.co.uk/opensource/qrisk2/c/
Anderson, K. , Wilson, P. , Odell, P. , and Kannel, W. , 1991, “ An Updated Coronary Risk Profile. A Statement for Health Professionals,” Circulation., 83(1), pp. 356–362. [CrossRef] [PubMed]
Makuch, R. , Freeman, D. , and Johnson, M. , 1979, “ Justification for the Lognormal Distribution as a Model for Blood Pressure,” J. Chronic Dis., 32(3), pp. 245–250. [CrossRef] [PubMed]
Larson, M. , 2006, “ Statistical Primer for Cardiovascular Research—Descriptive Statistics and Graphical Displays,” Circulation., 114(1), pp. 76–81. [CrossRef] [PubMed]
Pater, C. , 2005, “ The Blood Pressure ‘Uncertainty Range’—A Pragmatic Approach to Overcome Current Diagnostic Uncertainties (II),” Curr. Controlled Trials Cardiovasc. Med., 6(1), p. 5. [CrossRef]
Kannel, W. , Mcgee, D. , and Gordon, T. , 1976, “ A General Cardiovascular Risk Profile: The Framingham Study,” Am. J. Cardiol., 38(1), pp. 46–51. [CrossRef] [PubMed]
Chobanian, A. V. , Bakris, G. L. , Black, H. R. , Cushman, W. C. , Green, L. A. , Izzo, J. L. , Jones, D. W. , Materson, B. J. , Oparil, S. , Wright, J. T. , Roccella, E. J. , and the National High Blood Pressure Education Program Coordinating Committee, 2003, “ JNC7, the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure,” Hypertension, 42(6), pp. 1206–1252. [CrossRef] [PubMed]
Handler, J. , 2009, “ The Importance of Accurate Blood Pressure Measurement,” Perm. J./Summer, 13(3), pp. 51–54.
Hippisley-Cox, J. , and Coupland, C. , 2015, “ Development and Validation of Risk Prediction Equations to Estimate Future Risk of Heart Failure in Patients With Diabetes: A Prospective Cohort Study,” BMJ Open, 5(9), p. e008503. [CrossRef] [PubMed]
Canton Potsdam LAB Summary Discharge Report, 2013, private communication.
Pickering, T. , Hall, J. , Appel, L. , Falkner, B. , Graves, J. , Hill, M. , Jones, D. , Kurtz, T. , Sheps, S. , and Roccella, E. , 2005, “ Recommendations for Blood Pressure Measurement in Humans and Experimental Animals—Part 1: Blood Pressure Measurement in Humans: A Statement for Professionals From the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research,” Hypertension, 45(1), pp. 142–161. [CrossRef] [PubMed]
Frost, C. , and Thompson, S. , 2000, “ Correcting for Regression Dilution Bias: Comparison of Methods for a Single Predictor Variable,” J. R. Stat. Soc. Ser. A (Stat. Soc.), 163(2), pp. 173–189. [CrossRef]
Hosmer, D. , and Lemeshow, S. , 1999, Applied Survival Analysis, Wiley, New York, pp. 152–153.
Joint Committee for Guides in Metrology, Working Group 1, 2008, “ Evaluation of Measurement Data—Supplement 1 to the ‘Guide to the Expression of Uncertainty in Measurement’ Propagation of Distributions Using a Monte Carlo Method,” JCGM, 101, pp. 13–16.
Hayes, B. , 2003, “ A Lucid Interval,” Am. Sci., 91(6), pp. 484–488. [CrossRef]
Moore, R. , 1962, “ Interval Arithmetic and Automatic Error Analysis in Digital Computing,” Stanford University, Stanford, CA, Technical Report No. 25.
Kramer, W. , 2006, “ Generalized Intervals and the Dependency Problem,” Proc. Appl. Math. Mech., 6(1), pp. 683–684. [CrossRef]
LaFleur, R. , 2015, “ Uncertainty Arithmetics Applied to the Black-Scholes Model, Report to the Shipley Center,” Shipley Center, Clarkson University, Potsdam, NY, Report.
Kline, S. , and McClintock, F. , 1953, “ Describing Uncertainties in Single-Sample Experiments,” Mech. Eng., 75(1), pp. 3–8.
Olver, F. , 1978, “ A New Approach to Error Arithmetic,” SIAM J. Numer. Anal., 15(2), pp. 368–393. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

208 components of the relative uncertainty vector for the best model for the example black male patient

Grahic Jump Location
Fig. 2

Distribution of best model outcomes from four groups of 1000 random patients

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In